首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
Although there exist tremendous needs for on-chip biofluid delivery, research in this field has yielded limited numbers of devices for real-world applications. One challenge is the difficulty for micropumps to meet the requirements of being low cost to fabricate, easy to integrate and effective for intended applications at the same time. This research focuses on AC electrothermal (ACET) micropumps based on planar interdigitated electrodes, due to their practicality in fabrication and operation, and compatibility with biochemical fluids. Our prior work has optimized the design of electrode dimensions for a fixed microchannel design. This work finds that microchannel dimensions can also affect ACET micropumps significantly, with respect to flow rate and electric impedance loading. This work first considers the constraints arising from impedance loading by ACET micropumps on power supplies, then the investigation describes several key parameters (threshold height, saturation thickness), to arrive at an appropriate microchannel geometry for the effective delivery of biofluids. The optimized microchannel is expected to incorporate well into a multifunctional lab-chip system to transport biofluids efficiently.  相似文献   

2.
Flow rates of up to 50 microm s(-1) have been successfully achieved in a closed-loop channel using an AC electroosmotic pump. The AC electroosmotic pump is made of an interdigitated array of unequal width electrodes located at the bottom of a channel, with an AC voltage applied between the small and the large electrodes. The flow rate was found to increase linearly with the applied voltage and to decrease linearly with the applied frequency. The pump is expected to be suitable for circular chromatography for the following reasons: the driving forces are distributed over the channel length and the pumping direction is set by the direction of the interdigitated electrodes. Pumping in a closed-loop channel can be achieved by arranging the electrode pattern in a circle. In addition the inherent working principle of AC electroosmotic pumping enables the independent optimisation of the channel height or the flow velocity.  相似文献   

3.
The assembly of carbon nanotubes (CNTs) across planner electrodes using dielectrophoresis (DEP) is one of the standard methods used to fabricate CNT-based devices such as sensors. The medium drag velocity caused by electrokinetic phenomena such as electrothermal and electroosmotic might drive CNTs away from the deposition area. This problem becomes critical at large-scale electrode structures due to the high attenuation of the DEP force. Herein, we simulated and experimentally validated a novel DEP setup that uses a top glass cover to minimize the medium drag velocity. The simulation results showed that the drag velocity can be reduced by 2–3 orders of magnitude compared with the basic DEP setup. The simulation also showed that the optimum channel height to result in a significant drag velocity reduction was between 100 μm and 240 μm. We experimentally report, for the first time, the assembly and alignment of CNT bridges across indium tin oxide (ITO) electrodes with spacing up to 125 μm. We also derived an equation to optimize the CNT's concentration in suspensions based on the electrode gap width and channel height. The deposition of long CNTs across ITO electrodes has potential use in transparent electronics and microfluidic systems.  相似文献   

4.
《Electrophoresis》2018,39(11):1329-1338
Efficient pumping of blood flow in a microfluidic device is essential for rapid detection of bacterial bloodstream infections (BSI) using alternating current (AC) electrokinetics. Compared with AC electro‐osmosis (ACEO) phenomenon, the advantage of AC electrothermal (ACET) mechanism is its capability of pumping biofluids with high electrical conductivities at a relatively high AC voltage frequency. In the current work, the microfluidic pumping of non‐Newtonian blood flow using ACET forces is investigated in detail by modeling its multi‐physics process with hybrid boundary element method (BEM) and immersed boundary‐lattice Boltzmann method (IB‐LBM). The Carreau–Yasuda model is used to simulate the realistic rheological behavior of blood flow. The ACET pumping efficiency of blood flow is studied in terms of different AC voltage magnitudes and frequencies, thermal boundary conditions of electrodes, electrode configurations, channel height, and the channel length per electrode pair. Besides, the effect of rheological behavior on the blood flow velocity is theoretically analyzed by comparing with the Newtonian fluid flow using scaling law analysis under the same physical conditions. The results indicate that the rheological behavior of blood flow and its frequency‐dependent dielectric property make the pumping phenomenon of blood flow different from that of the common Newtonian aqueous solutions. It is also demonstrated that using a thermally insulated electrode could enhance the pumping efficiency dramatically. Besides, the results conclude that increasing the AC voltage magnitude is a more economical pumping approach than adding the number of electrodes with the same energy consumption when the Joule heating effect is acceptable.  相似文献   

5.
Recent numerical and experimental studies have investigated the increase in efficiency of microfluidic ac electro-osmotic pumps by introducing nonplanar geometries with raised steps on the electrodes. In this study, we analyze the effect of the step height on ac electro-osmotic pump performance. AC electro-osmotic pumps with three-dimensional electroplated steps are fabricated on glass substrates and pumping velocities of low ionic strength electrolyte solutions are measured systematically using a custom microfluidic device. Numerical simulations predict an improvement in pump performance with increasing step height, at a given frequency and voltage, up to an optimal step height, which qualitatively matches the trend observed in experiment. For a broad range of step heights near the optimum, the observed flow is much faster than with existing planar pumps (at the same voltage and minimum feature size) and in the theoretically predicted direction of the "fluid conveyor belt" mechanism. For small step heights, the experiments also exhibit significant flow reversal at the optimal frequency, which cannot be explained by the theory, although the simulations predict weak flow reversal at higher frequencies due to incomplete charging. These results provide insight to an important parameter for the design of nonplanar electro-osmotic pumps and clues to improve the fundamental theory of ACEO.  相似文献   

6.
Islam N  Reyna J 《Electrophoresis》2012,33(7):1191-1197
This paper discusses the principle of biased alternating current electroosmosis (ACEO) and its application to move the bulk fluid in a microchannel, as an alternative to mechanical pumping methods. Previous EO-driven flow research has looked at the effect of electrode asymmetry and transverse traveling wave forms on the performance of electroosmotic pumps. This paper presents an analysis that was conducted to assess the effect of combining an AC signal with a DC (direct current) bias when generating the electric field needed to impart electroosmosis (EO) within a microchannel. The results presented here are numerical and experimental. The numerical results were generated through simulations performed using COMSOL 3.5a. Currently available theoretical models for EO flows were embedded in the software and solved numerically to evaluate the effects of channel geometry, frequency of excitation, electrode array geometry, and AC signal with a DC bias on the flow imparted on an electrically conducting fluid. Simulations of the ACEO flow driven by a constant magnitude of AC voltage over symmetric electrodes did not indicate relevant net flows. However, superimposing a DC signal over the AC signal on the same symmetric electrode array leads to a noticeable net forward flow. Moreover, changing the polarity of electrical signal creates a bi-directional flow on symmetrical electrode array. Experimental flow measurements were performed on several electrode array configurations. The mismatch between the numerical and experimental results revealed the limitations of the currently available models for the biased EO. However, they confirm that using a symmetric electrode array excited by an AC signal with a DC bias leads to a significant improvement in flow rates in comparison to the flow rates obtained in an asymmetric electrode array configuration excited just with an AC signal.  相似文献   

7.
We present the development of a dynamic model for predicting the trajectory of microparticles in microfluidic devices, employing dielectrophoresis, for Hyperlayer field‐flow fractionation. The electrode configuration is such that multiple finite‐sized electrodes are located on the top and bottom walls of the microchannel; the electrodes on the walls are aligned with each other. The electric potential inside the microchannel is described using the Laplace equation while the microparticles' trajectory is described using equations based on Newton's second law. All equations are solved using finite difference method. The equations of motion account for forces including inertia, buoyancy, drag, gravity, virtual mass, and dielectrophoresis. The model is used for parametric study; the geometric parameters analyzed include microparticle radius, microchannel depth, and electrode/spacing lengths while volumetric flow rate and actuation voltage are the two operating parameters considered in the study. The trajectory of microparticles is composed of transient and steady state phases; the trajectory is influenced by all parameters. Microparticle radius and volumetric flow rate, above the threshold, do not influence the steady state levitation height; microparticle levitation is not possible below the threshold of the volumetric flow rate. Microchannel depth, electrode/spacing lengths, and actuation voltage influence the steady‐state levitation height.  相似文献   

8.
Fuentes HV  Woolley AT 《Lab on a chip》2007,7(11):1524-1531
Electrolysis-based micropumps integrated with microfluidic channels in micromachined glass substrates are presented. Photolithography combined with wet chemical etching and thermal bonding enabled the fabrication of multi-layer devices containing electrically actuated micropumps interfaced with sample and mobile phase reservoirs. A stationary phase was deposited on the microchannel walls by coating with 10% (w/w) chlorodimethyloctadecylsilane in toluene. Pressure-balanced injection was implemented by controlling the electrolysis time and voltage applied in the two independent micropumps. Current fluctuations in the micropumps due to the stochastic formation of bubbles on the electrode surfaces were determined to be the main cause of variation between separations. On-chip electrochemical pumping enabled the loading of pL samples with no dead volume between injection and separation. A mobile phase composed of 70% acetonitrile and 30% 50 mM acetate buffer (pH 5.45) was used for the chromatographic separation of three fluorescently labeled amino acids in <40 s with an efficiency of >3000 theoretical plates in a 2.5 cm-long channel. Our results demonstrate the potential of electrochemical micropumps integrated with microchannels to perform rapid chromatographic separations in a microfabricated platform. Importantly, these devices represent a significant step toward the development of miniaturized and fully integrated liquid chromatography systems.  相似文献   

9.
The dependence of gliding arc gas discharge characteristics, including gas flow field, arc column motion and volatile organic compounds (VOCs) decomposition performance, on reactor configuration parameters was investigated based on numerical simulation and laboratory experimental findings. For a given supply voltage (10 kV) and a certain nozzle outlet diameter (1.5 mm), increasing the electrodes gap (1–4 mm) or decreasing vertical distance between electrode throat and nozzle outlet (25–10 mm) will increase the gas flow rate through the electrode throat, the gas velocity in the plasma region, the arc column velocity, the maximum attainable position of the arc column and the electrical power consumption, also, higher VOCs decomposition rate and lower specific energy requirement are observed according to the n-butane and toluene decomposition experiments.  相似文献   

10.
Three-dimensional interdigitated electrodes (IDEs) have been investigated as sensing elements for biosensors. Electric field and current density were simulated in the vicinity of these electrodes as a function of the electrode width, gap, and height to determine the optimum geometry. Both the height and the gap between the electrodes were found to have significant effect on the magnitude and distribution of the electric field and current density near the electrode surface, while the width of the electrodes was found to have a smaller effect on field strength and current density. IDEs were fabricated based on these simulations and their performance tested by detecting C-reactive protein (CRP), a stress-related protein and an important biomarker for inflammation, cardiovascular disease risk indicator, and postsurgical recuperation. CRP-specific antibodies were immobilized on the electrode surface and the formation of an immunocomplex (IC) with CRP was monitored. Electrochemical impedance spectroscopy (EIS) was employed as the detection technique. EIS data at various concentrations (1 pg/mL to 10 μg/mL) of CRP spiked in buffer or diluted human serum was collected and fitted into an equivalent electrical circuit model. Change in resistance was found to be the parameter most sensitive to change in CRP concentration. The sensor response was linear from 0.1 ng/mL to 1 μg/mL in both buffer and 5% human serum samples. The CRP samples were validated using a commercially available ELISA for CRP detection. Hence, the viability of IDEs and EIS for the detection of serum biomarkers was established without using labeled or probe molecules.  相似文献   

11.
Plane parallel electrodes are favoured, in laboratory studies and industry, for electrosynthesis, environmental treatment and energy conversion. This electrode geometry offers uniform current distribution, while a flow channel ensures a controlled reaction environment. Performance can be enhanced by the use of tailored electrode surfaces, porous, three-dimensional (3D) electrodes and bipolar electrical connections. Scale-up can be achieved by increasing the electrode size, the number of electrodes in a stack, or the number of stacks in a system. Recent trends include (a) 3D printing of fast prototype cell components, (b) use of porous 3D electrode supports and their decoration, (c) development of microflow cells for electrosynthesis, (d) anodic Fenton oxidations for wastewater treatment and (e) computational models to simulate and rationalise reaction environment and performance. Future research needs are highlighted.  相似文献   

12.
In this study, we report a systematic study of the response of a charged microparticle confined in an optical trap and driven by electric fields. The particle is embedded in a polar fluid, hence, the role of ions and counterions forming a double layer around the electrodes and the particle surface itself has been taken into account. We analyze two different cases: (i) electrodes energized by a step‐wise voltage (DC mode) and (ii) electrodes driven by a sinusoidal voltage (AC mode). The experimental outcomes are analyzed in terms of a model that combines the electric response of the electrolytic cell and the motion of the trapped particle. In particular, for the DC mode we analyze the transient particle motion and correlate it with the electric current flowing in the cell. For the AC mode, the stochastic and deterministic motion of the trapped particle is analyzed either in the frequency domain (power spectral density, PSD) or in the time domain (autocorrelation function). Moreover, we will show how these different approaches (DC and AC modes) allow us, assuming predictable the applied electric field (here generated by plane parallel electrodes), to provide accurate estimation (3%) of the net charge carried by the microparticle. Vice versa, we also demonstrate how, once predetermined the charge, the trapped particle acts as a sensitive probe to reveal locally electric fields generated by arbitrary electrode geometries (in this work, wire‐tip geometry).  相似文献   

13.
A long term study of the voltage and electrochemical impedance characteristics of Ag/AgCl electrodes used in Harned Cell measurement of pH is presented. By all the measures investigated the electrodes are shown to degrade only slowly until approximately 200 days after manufacture, after which time the rate of degradation and critical failure of the electrodes increases. The absolute voltage drift of the electrodes may not be easily measured, so parameters determined directed or indirectly by electrochemical impedance spectroscopy have been assessed as a method to produce an alternative indication of electrode integrity. In this respect, resistance to charge transfer has been shown to be a very sensitive measure of changes in the characteristics of the electrodes, and the most closely related to the observed changes in voltage. Evidence is presented to support the hypothesis that the majority of electrode degradation (excluding critical failure) comes from the increased blocking of the microporous structure of the electrodes.  相似文献   

14.
Current density inhomogeneities on electrodes (of physical, chemical, or optical origin) induce long-range electrohydrodynamic fluid motion directed toward the regions of higher current density. Here, we analyze the flow and its implications for the orderly arrangement of colloidal particles as effected by this flow on patterned electrodes. A scaling analysis indicates that the flow velocity is proportional to the product of the applied voltage and the difference in current density between adjacent regions on the electrode. Exact analytical solutions for the streamlines are derived for the case of a spatially periodic perturbation in current density along the electrode. Particularly simple asymptotic expressions are obtained in the limits of thin double layers and either large or small perturbation wavelengths. Calculations of the streamlines are in good agreement with particle velocimetry experiments near a mechanically generated inhomogeneity (a "scratch") that generates a current density larger than that of the unmodified electrode. We demonstrate that proper placement of scratches on an electrode yields desired patterns of colloidal particles.  相似文献   

15.
We introduce herein an efficient microfluidic approach for continuous transport and localized collection of nanoparticles via hybrid electrokinetics, which delicately combines linear and nonlinear electrokinetics driven by a composite DC-biased AC voltage signal. The proposed technique utilizes a simple geometrical structure, in which one or a series of metal strips serving as floating electrode (FE) are attached to the substrate surface and arranged in parallel between a pair of coplanar driving electrodes (DE) in a straight microchannel. On application of a DC-biased AC electric field across the channel, nanoparticles can be transported continuously by DC bulk electroosmotic flow, and then trapped selectively onto the metal strips due to AC-field induced-charge electrokinetic (ICEK) phenomenon, which behaves as counter-rotating micro-vortices around the ideally polarizable surfaces of FE. Finite-element simulation is carried out by coupling the dual-frequency electric field, flow field and sample mass transfer in sequence, for guiding a practical design of the microfluidic nanoparticle concentrator. With the optimal device geometry, the actual performance of the technique is investigated with respect to DC bias, AC voltage amplitude, and field frequency by using both latex nanospheres (∼500 nm) and BSA molecules (∼10 nm). Our experimental observation indicates nanoparticles are always enriched into a narrow bright band on the surface of each FE, and a horizontal concentration gradient even emerges in the presence of multiple metal strips, which therefore permits localized analyte enrichment. The proposed trapping method is supposed to guide an elaborate design of flexible electrokinetic frameworks embedding FE for continuous-flow analyte manipulation in modern microfluidic systems.  相似文献   

16.
We explore a simple strategy of generating strong rotating flow in a stationary surface‐droplet, using an intricate interplay of local electrical and thermal fields. Wire electrodes are employed to generate on‐spot heating without necessitating any elaborate micro‐fabrication, which causes strong local gradients in electrical properties to induce mobile charges into the droplet. Applying a low voltage (~10 V), strong rotational velocity of the order of mm/s can be achieved in the system, within the standard operating ranges of operating and geometrical parameters. Further, altering the diameter of the electrode, vortices can be tuned locally or globally in low power budget, without incurring any droplet oscillations. These results may turn out to be of immense consequence in enhancing micromixing in a plethora of droplet based applications ranging from thermal management to medical diagnostics to be potentially employed in resource‐limited settings.  相似文献   

17.
Catalytic adsorptive stripping voltammetry (CAdSV) has been demonstrated at a bismuth film electrode (BiFE) in an injection-moulded electrochemical micro-flow cell. The polystyrene three-electrode flow cell was fabricated with electrodes moulded from a conducting grade of polystyrene containing 40% carbon fibre, one of which was precoated with Ag to enable its use as an on-chip Ag/AgCl reference electrode. CAdSV of Co(II) and Ni(II) in the presence of dimethylglyoxime (DMG) with nitrite employed as the catalyst was performed in order to assess the performance of the flow cell with an in-line plated BiFE. The injection-moulded electrodes were found to be suitable substrates for the formation of BiFEs. Key parameters such as the plating solution matrix, plating flow rate, analysis flow rate, solution composition and square-wave parameters have been characterised and optimal conditions selected for successful and rapid analysis of Co(II) and Ni(II) at the ppb level. The analytical response was linear over the range 1 to 20 ppb and deoxygenation of the sample solution was not required. The successful coupling of a microfluidic flow cell with a BiFE, thereby forming a “mercury-free” AdSV flow analysis sensor, shows promise for industrial and in-the-field applications where inexpensive, compact, and robust instrumentation capable of low-volume analysis is required.  相似文献   

18.
Expressions for the transient current at the downstream electrode in response to galvanostatic electrolysis at the upstream electrode in the channel flow cell were derived by applying double Laplace transformation when the electrode reaction at the upstream electrode is kinetically controlled. The ratio of the transient current to the steady state current or the transient collection efficiency was calculated as a function of electrode geometry and θ
, where Um is the mean flow velocity in the channel cell, D the diffusion coefficient of the electroactive species, b the half height of the channel, x1 the length of the upstream electrode and t the time elapsed since the beginning of the galvanostatic electrolysis at the upstream electrode. Curves for the transient collection efficiency can be applied to evaluating the amount of adsorption at the upstream electrode when metal at the electrode is anodically dissolved in solution. Digital simulation was carried out. Transient curves, obtained analytically, were in good agreement with those evaluated from the digital simulation. In order to allow one to draw transient curves readily, we derived a simple approximate equation.  相似文献   

19.
Porous electrodes have shown high performance in industrial electrochemical processes and redox flow batteries for energy storage. These materials offer great advantages over planar electrodes in terms of larger surface area, superior space time yield and enhanced mass transport. In this work, a highly ordered porous stainless steel structure was manufactured by 3D-printing and coated with nickel from an acidic bath by electrodeposition in a divided rectangular channel flow cell. Following the electrodeposition, the volumetric mass transport coefficient of this electrode was determined by the electrochemical reduction of 1.0×10−3 mol dm−3 of ferricyanide ions by linear sweep voltammetry and chronoamperometry. The convection diffusion characteristics are compared with other geometries to demonstrate the novelty and the advantages of 3D-printed porous electrodes in electrochemical flow reactors. Robust porous electrodes with tailored surface area, composition, volumetric porosity and flow properties are possible.  相似文献   

20.
In this article, we report the design of a microchip based hydraulic pump that employs a sodium silicate derived sol–gel structure for generating pressure-driven flow within a microfluidic network. The reported sol–gel structure was fabricated in a chosen location of our device by selectively retaining sodium silicate solution within a sub-micrometer deep segment via capillary forces, and then providing the precursor material appropriate thermal treatment. It was shown that while the molecular weight cut-off for these membranes is at least an order of magnitude smaller than their photo-polymerized counterparts, their electrical conductance is significant. Moreover, unlike their polymeric counterparts these structures were found to be capable of blocking electroosmotic flow, thereby generating a pressure-gradient around their interface with an open microchannel upon application of an electric field across the microchannel–membrane junction. In this work, a fraction of the resulting hydrodynamic flow was successfully guided to an electric field-free analysis channel to implement a pressure-driven assay. Our experiments show that the pressure-driven velocity produced in the analysis channel of our device varied linearly with the voltage applied across the sol–gel membrane and was nearly independent of the cross-sectional dimensions of the membrane and the microfluidic channels. With our current design pressure-driven velocities up to 1.7 mm/s were generated for an applied voltage of 2 kV, which easily covers the range of flow speeds that can minimize the plate height in most microfluidic separations. Finally, the functionality of our device was demonstrated by implementing a reverse phase chromatographic separation in the analysis channel of our device using the pressure-driven flow generated on-chip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号