首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let G be a simple algebraic group defined over ?. Let e be a nilpotent element in $ \mathfrak{g} $ = Lie(G) and denote by U ( $ \mathfrak{g} $ , e) the finite W-algebra associated with the pair ( $ \mathfrak{g} $ , e). It is known that the component group Γ of the centraliser of e in G acts on the set ? of all one-dimensional representations of U ( $ \mathfrak{g} $ , e). In this paper we prove that the fixed point set ?Γ is non-empty. As a corollary, all finite W-algebras associated with $ \mathfrak{g} $ admit one-dimensional representations. In the case of rigid nilpotent elements in exceptional Lie algebras we find irreducible highest weight $ \mathfrak{g} $ -modules whose annihilators in U ( $ \mathfrak{g} $ ) come from one-dimensional representations of U ( $ \mathfrak{g} $ , e) via Skryabin’s equivalence. As a consequence, we show that for any nilpotent orbit $ \mathcal{O} $ in $ \mathfrak{g} $ there exists a multiplicity-free (and hence completely prime) primitive ideal of U ( $ \mathfrak{g} $ ) whose associated variety equals the Zariski closure of $ \mathcal{O} $ in $ \mathfrak{g} $ .  相似文献   

2.
Let ${2\leq k\in \mathbb{N}}$ . Recently, Costantini and Zacher obtained a lattice-theoretic characterization of the classes ${\mathfrak{N}^k}$ of finite soluble groups with nilpotent length at most k. It is the aim of this paper to give a lattice-theoretic characterization of the classes ${\mathfrak{N}^{k-1}\mathfrak{A}}$ of finite groups with commutator subgroup in ${\mathfrak{N}^{k-1}}$ ; in addition, our method also yields a new characterization of the classes ${\mathfrak{N}^k}$ . The main idea of our approach is to use two well-known theorems of Gaschütz on the Frattini and Fitting subgroups of finite groups.  相似文献   

3.
This paper is a survey of our recent results concerning metabelian varieties, and more specifically, varieties generated by wreath products of Abelian groups. We give a full classification of cases where sets of wreath products of Abelian groups $ \mathfrak{X} $ Wr $ \mathfrak{Y} $ = { X Wr Y | X ∈ $ \mathfrak{X} $ , Y $ \mathfrak{Y} $ } and $ \mathfrak{X} $ wr $ \mathfrak{Y} $ = {X wr Y | X $ \mathfrak{X} $ , Y $ \mathfrak{Y} $ } generate the product variety $ \mathfrak{X} $ var ( $ \mathfrak{Y} $ ).  相似文献   

4.
Let $ {\user1{\mathcal{C}}} $ be the commuting variety of the Lie algebra $ \mathfrak{g} $ of a connected noncommutative reductive algebraic group G over an algebraically closed field of characteristic zero. Let $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ be the singular locus of $ {\user1{\mathcal{C}}} $ and let $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ be the locus of points whose G-stabilizers have dimension > rk G. We prove that: (a) $ {\user1{\mathcal{C}}}^{{{\text{sing}}}} $ is a nonempty subset of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ ; (b) $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{irr}}}} = 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ where the maximum is taken over all simple ideals $ \mathfrak{a} $ of $ \mathfrak{g} $ and $ l{\left( \mathfrak{a} \right)} $ is the “lacety” of $ \mathfrak{a} $ ; and (c) if $ \mathfrak{t} $ is a Cartan subalgebra of $ \mathfrak{g} $ and $ \alpha \in \mathfrak{t}^{*} $ root of $ \mathfrak{g} $ with respect to $ \mathfrak{t} $ , then $ \overline{{G{\left( {{\text{Ker}}\,\alpha \times {\text{Ker }}\alpha } \right)}}} $ is an irreducible component of $ {\user1{\mathcal{C}}}^{{{\text{irr}}}} $ of codimension 4 in $ {\user1{\mathcal{C}}} $ . This yields the bound $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 5 - {\text{max}}\,l{\left( \mathfrak{a} \right)} $ and, in particular, $ {\text{codim}}_{{\user1{\mathcal{C}}}} \,{\user1{\mathcal{C}}}^{{{\text{sing}}}} \geqslant 2 $ . The latter may be regarded as an evidence in favor of the known longstanding conjecture that $ {\user1{\mathcal{C}}} $ is always normal. We also prove that the algebraic variety $ {\user1{\mathcal{C}}} $ is rational.  相似文献   

5.
Let $\mathfrak{g}$ be a semisimple Lie algebra and $\mathfrak{k}$ be a reductive subalgebra in $\mathfrak{g}$ . We say that a $\mathfrak{g}$ -module M is a $(\mathfrak{g},\mathfrak{k})$ -module if M, considered as a $\mathfrak{k}$ -module, is a direct sum of finite-dimensional $\mathfrak{k}$ -modules. We say that a $(\mathfrak{g},\mathfrak{k})$ -module M is of finite type if all $\mathfrak{k}$ -isotopic components of M are finite-dimensional. In this paper we prove that any simple $(\mathfrak{g},\mathfrak{k})$ -module of finite type is holonomic. A simple $\mathfrak{g}$ -module M is associated with the invariants V(M), V(LocM), and L(M) reflecting the ??directions of growth of M.?? We also prove that for a given pair $(\mathfrak{g},\mathfrak{k})$ the set of possible invariants is finite.  相似文献   

6.
Let $ \mathfrak{g} $ be a reductive Lie algebra over $ \mathbb{C} $ and $ \mathfrak{k} \subset \mathfrak{g} $ be a reductive in $ \mathfrak{g} $ subalgebra. We call a $ \mathfrak{g} $ -module M a $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -module whenever M is a direct sum of finite-dimensional $ \mathfrak{k} $ -modules. We call a $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -module M bounded if there exists $ {C_M} \in {\mathbb{Z}_{{ \geqslant 0}}} $ such that for any simple finite-dimensional $ \mathfrak{k} $ -module E the dimension of the E-isotypic component is not greater than C M dim E. Bounded $ \left( {\mathfrak{g}{\hbox{,}}\;\mathfrak{k}} \right) $ -modules form a subcategory of the category of $ \mathfrak{g} $ -modules. Let V be a finite-dimensional vector space. We prove that the categories of bounded $ \left( {\mathfrak{sp}\left( {{{\mathrm{S}}^2}V \oplus {{\mathrm{S}}^2}{V^{*}}} \right),\;\mathfrak{gl}(V)} \right) $ - and $ \left( {\mathfrak{sp}\left( {{\varLambda^2}V \oplus {\varLambda^2}{V^{*}}} \right),\;\mathfrak{gl}(V)} \right) $ -modules are isomorphic to the direct sum of countably many copies of the category of representations of some explicitly described quiver with relations under some mild assumptions on the dimension of V .  相似文献   

7.
We study cohomological induction for a pair $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ , $ \mathfrak{g} $ being an infinitedimensional locally reductive Lie algebra and $ \mathfrak{k} \subset \mathfrak{g} $ being of the form $ \mathfrak{k}_{0} \subset C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ , where $ \mathfrak{k}_{0} \subset \mathfrak{g} $ is a finite-dimensional reductive in $ \mathfrak{g} $ subalgebra and $ C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ is the centralizer of $ \mathfrak{k}_{0} $ in $ \mathfrak{g} $ . We prove a general nonvanishing and $ \mathfrak{k} $ -finiteness theorem for the output. This yields, in particular, simple $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ -modules of finite type over k which are analogs of the fundamental series of generalized Harish-Chandra modules constructed in [PZ1] and [PZ2]. We study explicit versions of the construction when $ \mathfrak{g} $ is a root-reductive or diagonal locally simple Lie algebra.  相似文献   

8.
Let $ \mathfrak{g} $ be the complex semisimple Lie algebra associated to a complex semisimple algebraic group G, $ \mathfrak{b} $ a Borel subalgebra of $ \mathfrak{g} $ , $ \mathfrak{h}\subset \mathfrak{b} $ the Cartan sublagebra, and N ? G the unipotent subgroup corresponding to the nilradical $ \mathfrak{n}\subset \mathfrak{b} $ . We show that the explicit formula for the extremal projection operator for $ \mathfrak{g} $ obtained by Asherova, Smirnov, and Tolstoy and similar formulas for Zhelobenko operators are related to the existence of a birational equivalence $ N\times \mathfrak{h}\to \mathfrak{b} $ given by the restriction of the adjoint action. Simple geometric proofs of formulas for the “classical” counterparts of the extremal projection operator and of Zhelobenko operators are also obtained.  相似文献   

9.
Let $(\mathfrak{g}, [p]) $ be a restricted Lie superalgebra over an algebraically closed field k of characteristic p?>?2. Let $\mathfrak{u}(\mathfrak{g})$ denote the restricted enveloping algebra of $\mathfrak{g}$ . In this paper we prove that the cohomology ring $\operatorname{H}^\bullet(\mathfrak{u}(\mathfrak{g}), k)$ is finitely generated. This allows one to define support varieties for finite dimensional $\mathfrak{u}(\mathfrak{g})$ -supermodules. We also show that support varieties for finite dimensional $\mathfrak{u}(\mathfrak{g})$ - supermodules satisfy the desirable properties of a support variety theory.  相似文献   

10.
Let G be a commutative group, written additively, with a neutral element 0, and let K be a finite group. Suppose that K acts on G via group automorphisms ${G \ni a \mapsto ka \in G}$ , ${k \in K}$ . Let ${{\mathfrak{H}}}$ be a complex Hilbert space and let ${{\mathcal L}({\mathfrak{H}})}$ be the algebra of all bounded linear operators on ${{\mathfrak{H}}}$ . A mapping ${u \colon G \to {\mathcal L}({\mathfrak{H}})}$ is termed a K-spherical function if it satisfies (1) ${|K|^{-1} \sum_{k\in K} u (a+kb)=u (a) u (b)}$ for any ${a,b\in G}$ , where |K| denotes the cardinality of K, and (2) ${u (0) = {\rm id}_{\mathfrak {H}},}$ where ${{\rm id}_{\mathfrak {H}}}$ designates the identity operator on ${{\mathfrak{H}}}$ . The main result of the paper is that for each K-spherical function ${u \colon G \to {\mathcal {L}}({\mathfrak {H}})}$ such that ${\| u \|_{\infty} = \sup_{a\in G} \| u (a)\|_{{\mathcal L}({\mathfrak{H}})} < \infty,}$ there is an invertible operator S in ${{\mathcal L}({\mathfrak{H}})}$ with ${\| S \| \, \| S^{-1}\| \leq |K| \, \| u \|_{\infty}^2}$ such that the K-spherical function ${{\tilde{u}} \colon G \to {\mathcal L}({\mathfrak{H}})}$ defined by ${{\tilde{u}}(a) = S u (a) S^{-1},\,a \in G,}$ satisfies ${{\tilde{u}}(-a) = {\tilde{u}}(a)^*}$ for each ${a \in G}$ . It is shown that this last condition is equivalent to insisting that ${{\tilde{u}}(a)}$ be normal for each ${a \in G}$ .  相似文献   

11.
We initiate a new line of investigation on branching problems for generalized Verma modules with respect to reductive symmetric pairs $ \left( {\mathfrak{g},\mathfrak{g}'} \right) $ . In general, Verma modules may not contain any simple module when restricted to a reductive subalgebra. In this article we give a necessary and sufficient condition on the triple $ \left( {\mathfrak{g},\mathfrak{g}',\mathfrak{p}} \right) $ such that the restriction $ {\left. X \right|_{\mathfrak{g}'}} $ always contains simple $ \mathfrak{g}' $ -modules for any $ \mathfrak{g} $ -module X lying in the parabolic BGG category $ {\mathcal{O}^\mathfrak{p}} $ attached to a parabolic subalgebra $ \mathfrak{p} $ of $ \mathfrak{g} $ . Formulas are derived for the Gelfand?CKirillov dimension of any simple module occurring in a simple generalized Verma module. We then prove that the restriction $ {\left. X \right|_{\mathfrak{g}'}} $ is generically multiplicity-free for any $ \mathfrak{p} $ and any $ X \in {\mathcal{O}^\mathfrak{p}} $ if and only if $ \left( {\mathfrak{g},\mathfrak{g}'} \right) $ is isomorphic to (A n , A n-1), (B n , D n ), or (D n+1, B n ). Explicit branching laws are also presented.  相似文献   

12.
Let $G$ be a connected semisimple algebraic group with Lie algebra $\mathfrak{g }$ and $P$ a parabolic subgroup of $G$ with $\mathrm{Lie\, }P=\mathfrak{p }$ . The parabolic contraction $\mathfrak{q }$ of $\mathfrak{g }$ is the semi-direct product of $\mathfrak{p }$ and a $\mathfrak{p }$ -module $\mathfrak{g }/\mathfrak{p }$ regarded as an abelian ideal. We are interested in the polynomial invariants of the adjoint and coadjoint representations of $\mathfrak{q }$ . In the adjoint case, the algebra of invariants is easily described and it turns out to be a graded polynomial algebra. The coadjoint case is more complicated. Here we found a connection between symmetric invariants of $\mathfrak{q }$ and symmetric invariants of centralisers $\mathfrak{g }_e\subset \mathfrak{g }$ , where $e\in \mathfrak{g }$ is a Richardson element with polarisation $\mathfrak{p }$ . Using this connection and results of Panyushev et al. (J Algebra 313:343–391, 2007), we prove that the algebra of symmetric invariants of $\mathfrak{q }$ is free for all parabolic subalgebras in types $\mathbf A$ and $\mathbf C$ and some parabolics in type $\mathbf B$ . This technique also applies to the minimal parabolic subalgebras in all types. For $\mathfrak{p }=\mathfrak{b }$ , a Borel subalgebra of $\mathfrak{g }$ , one gets a contraction of $\mathfrak{g }$ recently introduced by Feigin (Selecta Math 18:513–537, 2012) and studied from invariant-theoretic point of view in our previous paper (Panyushev and Yakimova in Ann Inst Fourier 62(6):2053–2068, 2012).  相似文献   

13.
We classify good ?-gradings of basic Lie superalgebras over an algebraically closed field $\mathbb{F}$ of characteristic zero. Good ?-gradings are used in quantum Hamiltonian reduction for affine Lie superalgebras, where they play a role in the construction of super W-algebras. We also describe the centralizer of a nilpotent even element and of an $\mathfrak{s}\mathfrak{l}_2$ -triple in $\mathfrak{g}\mathfrak{l}\left( {\left. m \right|n} \right)$ and $\mathfrak{o}\mathfrak{s}\mathfrak{p}\left( {\left. m \right|2n} \right)$ .  相似文献   

14.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

15.
Let $\mathfrak{g }$ be a Lie algebra, $E$ a vector space containing $\mathfrak{g }$ as a subspace. The paper is devoted to the extending structures problem which asks for the classification of all Lie algebra structures on $E$ such that $\mathfrak{g }$ is a Lie subalgebra of $E$ . A general product, called the unified product, is introduced as a tool for our approach. Let $V$ be a complement of $\mathfrak{g }$ in $E$ : the unified product $\mathfrak{g } \,\natural \, V$ is associated to a system $(\triangleleft , \, \triangleright , \, f, \{-, \, -\})$ consisting of two actions $\triangleleft $ and $\triangleright $ , a generalized cocycle $f$ and a twisted Jacobi bracket $\{-, \, -\}$ on $V$ . There exists a Lie algebra structure $[-,-]$ on $E$ containing $\mathfrak{g }$ as a Lie subalgebra if and only if there exists an isomorphism of Lie algebras $(E, [-,-]) \cong \mathfrak{g } \,\natural \, V$ . All such Lie algebra structures on $E$ are classified by two cohomological type objects which are explicitly constructed. The first one $\mathcal{H }^{2}_{\mathfrak{g }} (V, \mathfrak{g })$ will classify all Lie algebra structures on $E$ up to an isomorphism that stabilizes $\mathfrak{g }$ while the second object $\mathcal{H }^{2} (V, \mathfrak{g })$ provides the classification from the view point of the extension problem. Several examples that compute both classifying objects $\mathcal{H }^{2}_{\mathfrak{g }} (V, \mathfrak{g })$ and $\mathcal{H }^{2} (V, \mathfrak{g })$ are worked out in detail in the case of flag extending structures.  相似文献   

16.
Let ${\mathcal{B}_{p,w}}$ be the Banach algebra of all bounded linear operators acting on the weighted Lebesgue space ${L^p(\mathbb{R},w)}$ , where ${p\in(1,\infty)}$ and w is a Muckenhoupt weight. We study the Banach subalgebra ${\mathfrak{U}_{p,w}}$ of ${\mathcal{B}_{p,w}}$ generated by all multiplication operators aI ( ${a\in PSO^\diamond}$ ) and all convolution operators W 0(b) ( ${b\in PSO_{p,w}^\diamond}$ ), where ${PSO^\diamond\subset L^\infty(\mathbb{R})}$ and ${PSO_{p,w}^\diamond\subset M_{p,w}}$ are algebras of piecewise slowly oscillating functions that admit piecewise slowly oscillating discontinuities at arbitrary points of ${\mathbb{R}\cup\{\infty\}}$ , and M p,w is the Banach algebra of Fourier multipliers on ${L^p(\mathbb{R},w)}$ . Under some conditions on the Muckenhoupt weight w, using results of the local study of ${\mathfrak{U}_{p,w}}$ obtained in the first part of the paper and applying the theory of Mellin pseudodifferential operators and the two idempotents theorem, we now construct a Fredholm symbol calculus for the Banach algebra ${\mathfrak{U}_{p,w}}$ and establish a Fredholm criterion for the operators ${A\in\mathfrak{U}_{p,w}}$ in terms of their Fredholm symbols. In four partial cases we obtain for ${\mathfrak{U}_{p,w}}$ more effective results.  相似文献   

17.
18.
The bcβγ-system $ \mathcal{W} $ of rank 3 has an action of the affine vertex algebra $ {V_0}\left( {\mathfrak{s}{{\mathfrak{l}}_2}} \right) $ , and the commutant vertex algebra $ \mathcal{C}=\mathrm{Com}\left( {{V_0}\left( {\mathfrak{s}{{\mathfrak{l}}_2}} \right),\mathcal{W}} \right) $ contains copies of V ?3/2 $ \left( {\mathfrak{s}{{\mathfrak{l}}_2}} \right) $ and Odake’s algebra $ \mathcal{O} $ . Odake’s algebra is an extension of the N = 2 super-conformal algebra with c = 9, and is generated by eight fields which close nonlinearly under operator product expansions. Our main result is that V ?3/2 $ \left( {\mathfrak{s}{{\mathfrak{l}}_2}} \right) $ and $ \mathcal{O} $ form a Howe pair (i.e., a pair of mutual commutants) inside $ \mathcal{C} $ . More generally, any finite-dimensional representation of a Lie algebra $ \mathfrak{g} $ gives rise to a similar Howe pair, and this example corresponds to the adjoint representation of $ \mathfrak{s}{{\mathfrak{l}}_2} $ .  相似文献   

19.
By a $\mathfrak{B}$ -regular variety, we mean a smooth projective variety over $\mathbb{C}$ admitting an algebraic action of the upper triangular Borel subgroup $\mathfrak{B} \subset {\text{SL}}_{2} {\left( \mathbb{C} \right)}$ such that the unipotent radical in $\mathfrak{B}$ has a unique fixed point. A result of Brion and the first author [4] describes the equivariant cohomology algebra (over $\mathbb{C}$ ) of a $\mathfrak{B}$ -regular variety X as the coordinate ring of a remarkable affine curve in $X \times \mathbb{P}^{1}$ . The main result of this paper uses this fact to classify the $\mathfrak{B}$ -invariant subvarieties Y of a $\mathfrak{B}$ -regular variety X for which the restriction map i Y : H *(X) → H *(Y) is surjective.  相似文献   

20.
Let $\mathfrak{g }$ be a complex, semisimple Lie algebra. Drinfeld showed that the quantum loop algebra $U_\hbar (L\mathfrak g )$ of $\mathfrak{g }$ degenerates to the Yangian ${Y_\hbar (\mathfrak g )}$ . We strengthen this result by constructing an explicit algebra homomorphism $\Phi $ from $U_\hbar (L\mathfrak g )$ to the completion of ${Y_\hbar (\mathfrak g )}$ with respect to its grading. We show moreover that $\Phi $ becomes an isomorphism when ${U_\hbar (L\mathfrak g )}$ is completed with respect to its evaluation ideal. We construct a similar homomorphism for $\mathfrak{g }=\mathfrak{gl }_n$ and show that it intertwines the actions of $U_\hbar (L\mathfrak gl _{n})$ and $Y_\hbar (\mathfrak gl _{n})$ on the equivariant $K$ -theory and cohomology of the variety of $n$ -step flags in ${\mathbb{C }}^d$ constructed by Ginzburg–Vasserot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号