首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 3 毫秒
1.
重氮树脂型聚电解质复合物与SDS相互作用研究   总被引:2,自引:1,他引:1  
由于聚电解质与表面活性剂的相互作用具有很多特别的性质而倍受关注[1~10],但具有感光性的重氮树脂作为正离子聚电解质与表面活性剂相互作用尚未见报道.本文研究了重氮树脂(DR)与聚苯乙烯磺酸钠(PSS)形成的聚电解复合物(DR-PSS)与十二烷基硫酸钠...  相似文献   

2.
论文的第一部分研究二苯胺-4-重氮树脂(DR)与十二烷基硫酸钠(SDS)的相互作用,发现重氮树脂(DR)水溶液中加入SDS后,体系先产生重氮树脂-SDS复合物沉淀,继续加入SDS,该沉淀又会重新溶解.SDS与重氮树脂间的疏水相互作用对这一现象作了解释.另外,还发现SDS水溶液可以溶解难溶的聚电解质复合物,并通过比较溶解前后重氮基的热分解温度及红外振动吸收来判定其所对应的反离子,从而确定了该溶解的过程是SDS先将聚电解质复合物拆开,再通过疏水相互作用将带有相反电荷的聚电解质溶解.用SDS水溶液溶解的含有感光性重氮树脂的聚电解质复合物可用于阴图PS版感光液的制备,得到一种稳定好,污染小,成本低的感光液.  相似文献   

3.
曹曙光  赵超 《应用化学》1997,14(6):45-47
重氮树脂的合成曹曙光赵超曹维孝*(北京大学化学与分子工程学院北京100871)关键词重氮树脂,合成,多聚甲醛1997-02-04收稿,1997-07-14修回国家自然科学基金资助课题二苯胺重氮盐与甲醛缩合生成的重氮树脂由于其感光速度快,亲墨性好,又易...  相似文献   

4.
利用层间的静电吸附作用,重氮树脂和不同种类的含金属纳米粒子被依次吸附到硅片表面形成层层自组装膜。通过改变自组装膜的层数可以控制纳米粒子在表面吸附的量,同时利用重氮树脂的光敏特性可以实现纳米粒子在表面的图案化排布。以这些纳米粒子为催化剂,研究了单壁碳纳米管在硅片表面的化学气相沉积生长。  相似文献   

5.
4 乙烯基吡啶 苯乙烯共聚物正离子与十二基烷基硫酸钠相互作用研究郑晓亮曹维孝(北京大学化学与分子工程学院北京100871)关键词4 乙烯基吡啶 苯乙烯共聚物正离子,十二烷基硫酸钠,疏水相互作用,胶束交联水溶性聚合体尤其是聚电解质与表面活性剂相互...  相似文献   

6.
阴图PS版感光层主要是由成膜树脂和感光树脂组成.感光树脂一般是二苯胺或取代二苯胺重氮树脂.成膜树脂类型较多.就成膜角度看,能溶于合适溶剂的线型聚合体均可为成膜树脂.实际上并非如此,很多聚合体虽能与重氮树脂有共同的溶剂,并且本身可形成强度甚好的膜,以后可被显影除去,但并不能选作成膜树脂,主要原因是这些聚合体在光照下不能与重氮树脂光交联.  相似文献   

7.
以二苯胺重氮盐(DDS)为模型化合物,系统考察了其在水中热分解反应与十二烷基硫酸钠(SWS)的浓度以及溶液中小分子电解质的关系。结合荧光分析结果,证实了DDS及重氮树脂(DR)在SDS溶液中热稳定性的提高是由于DDS和DR分子与SDS分子间的疏水相互作用和静电吸引作用使它们同SDS分子共同形成混合预胶束或胶束,通过预胶束或胶束的静电及极性效应使其中的DDS和DR分子上的重氮基得到保护。随着SDS浓  相似文献   

8.
带相反电荷的聚电解质的自组装,由于方法简单,对环境无污染,近年来备受重视[1~8]。以重氮树脂为聚正离子的聚电解质复合物,由于光照时重氮基分解,致使复合物的离子键转为共价键,溶解性发生重大改变,从而以重氮树脂为聚正离子的聚电解质复合物是一种新的光成像体系[9,10]。张希等用重氮树脂与聚苯乙烯磺酸钠成功地制备了对极性溶剂稳定的自组装超薄膜[11]。本文用羧基负离子聚电解质与重氮树脂进行自组装,并研究该自组装膜的光,热反应。羧基负离子聚电解质与重氮树脂的自组装超薄膜,文献上报道较少。1 聚丙烯酸钠…  相似文献   

9.
性介质下与甲醛等缩合生成重氮树脂,从而是制备负性PS版的重要材料。但从二苯胺重氮盐直接制备的重氮树脂和感光印刷版的储存性能不好,难于形成商品。  相似文献   

10.
白硕  鲁从华  曹维孝 《化学学报》2005,63(9):866-868
从巯基乙酸包覆的银纳米颗粒(MA-AgNP)和重氮树脂(DR)由自组装方法, 制备了感光性的超薄膜. 在掩模(photomask)覆盖下对膜进行选择性曝光和紧接着的十二烷基硫酸钠水溶液显影, 未光照部分的膜被显影液完全洗脱, 而光照部分的膜不能洗脱, 从而形成清晰的图像. 用AFM和SEM对图像进行了表征.  相似文献   

11.
The interaction between a diazoresin and sodium dodecyl sulfate (SDS) in aqueous solution was investigated. It was found that the diazoresin-SDS complex dissolves in water containing excessive SDS. The thermal stability and photo-sensitivity of the diazoresin-SDS complex was also studied. The results show that the complex possesses an increased thermal stability while preserving its high photo-sensitivity. An aqueous composition containing diazoresin and SDS was used directly to prepare a photosensitive coating.  相似文献   

12.
带有相反电荷 (通常在侧链 )的聚电解质 ,通过静电相互作用形成的复合物 ,称聚电解质复合物 (PEC) .PEC已有很多研究[1~ 3] ,也有一些应用的报道[4,5] .重氮树脂 (DR) ,一种由二苯胺 4 重氮盐与多聚甲醛在浓硫酸中缩合得到的缩聚物[6] ,因侧链带重氮基 ,所以是正离子聚电解质 .它能与各种负离子聚电解质生成感光性的PEC ,并可用作光成像体系的感光剂[7,8] .DR与聚磷酸 (PPA)生成重氮基为正离子 ,磷酸基为负离子的复合物 ,这种复合物文献上未有过报道 .本文初步研究了这种复合物的制备与性质 .1 重氮树脂 聚磷酸复合物 (…  相似文献   

13.
聚电解质复合物 ( PEC)因其独特的物理化学性质而受到广泛关注 .对其研究主要集中在其结构及形成的影响因素 ,如聚电解质的分子量 [1,2 ] 、电荷密度、电荷强弱 [1,2 ] 及溶液离子强度 [3,4 ] ,而很少有关于聚电解质复合物溶解性的报道 [5,6 ] .一般认为组成 PEC的聚正离子 ( PC)和聚负离子 ( PA)之间 ,通过离子键形成网状交联结构而不溶于水及有机溶剂 .只有一种特殊的溶剂体系屏蔽溶剂可溶解此类复合物[7,8] .本文报道一类新的聚电解质复合物 :以二苯胺重氮树脂 DR为聚正离子 ,苯乙烯 -马来酸酐碱性水解物 ( PSMNa)为聚负离子的 P…  相似文献   

14.
从硝基重氮树脂(NDR)与包裹巯基乙酸的铂纳米颗粒(MA-PtNP)的静电自组装,制备了感光性的自组装多层超薄膜.经选择性紫外曝光和十二烷基硫酸钠(SDS)水溶液显影,光照部分的膜,因层与层之间的离子键转变为共价键,不再被SDS水溶液洗脱而留下来;未光照部分的膜,层与层之间仍是离子键,在显影时被除去,从而形成图像.用AFM和SEM对形成的图像进行了表征.  相似文献   

15.
重氮树脂基磁性超薄膜及其图形化   总被引:5,自引:0,他引:5  
构建磁性薄膜,在磁性理论和应用技术上都有重要意义.通过磁性膜的研究,能揭示磁性机制,对界面磁性、维度磁性、磁性的藕合特征、磁性量子效应等建立新的认识.磁性膜还提供一种新的人造磁性材料,在信息储存、磁性图像、医学等方面有潜在应用.目前,形成磁性薄膜的技术主要有溅射(Sputtering)、分子外延性生长(Molecular beam epitaxy)、真空喷镀、电泳、脉冲激光沉积、Langmuir-Blodgett(LB)沉积、层层组装(LBL)等方法.  相似文献   

16.
The sulfonate-containing polyelectrolytes (SPE) from sulfonation of polystyrene (PS) and copolymerization of 3-sulfo-propyl methacrylate, potassium salt (SPMS) with styrene (S) were prepared. Photosensitive polyelectrolyte complexes (PECDR) derived from SPE and diazoresin (DR), which does not dissolve in water or organic solvent due to its ionic crosslinking structure, dissolves in aqueous solution of sodium dodecyl sulfate (SDS) due to the dissociation of PECDR and the hydrophobic interaction between SDS and the polymer chain. The photosensitive behavior and thermostability of the PECDR were investigated, and it was found that the thermostability of PECDR increases dramatically in SDS aqueous solution. It was proposed that the higher thermostability of PECDR in SDS aqueous solution is due to an aggregation of SDS molecules around the diazonium group of the PECDR, which protects the  N group of the DR from attack by the nucleophiles. The image-forming behavior of PECDR by ultraviolet (UV) light was examined and considered to be different from other PECs. It was concluded that the photoimaging behavior of PECDR is based on a reaction in which an ionic bond converts to a covalent bond. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2601–2606, 1999  相似文献   

17.
The complexation between negatively charged sodium dodecyl sulfate (SDS) and positively charged amphoteric polyurethane (APU) self-assembled nanoparticles (NPs) containing nonionic hydrophobic segments is studied by dynamic light scattering, pyrene fluorescent probing, zeta-potential, and transmission electron microscopy (TEM) in the present paper. With increasing the mol ratio of SDS to the positive charges on the surface of APU NPs, the aqueous solution of APU NPs presents precipitation at pH 2, around stoichiometric SDS concentration, and then the precipitate dissociates with excess SDS to form more stable nanoparticles of ionomer complexes. Three stages of the complexation process are clearly shown by the pyrene I1/I3 variation of the complex systems, which only depends on the ratio of SDS/APU, and demonstrate that the process is dominated by electrostatic attraction and hydrophobic aggregation.  相似文献   

18.
报道了二苯胺-4-重氮盐(DDS)与十二烷基硫酸钠(SDS)在水溶液中的相互作用.实验结果表明,体系粘度随SDS/DDS物质的量比(ξ)的变化而急增急降.当ξ=0~0.9时,二者形成沉淀,体系的粘度基本不变;当ξ=1.9~2.3时,沉淀溶解并伴随着体系粘度急增,最高粘度达初始值的2520倍;之后,随ξ的增大,体系粘度迅速下降至初始值.对DDS-SDS聚集体的微观结构与体系粘度的关系进行了初步讨论.同时发现体系粘度是光敏性的,紫外光照可使其迅速下降.  相似文献   

19.
In this contribution, the phase behavior of a surfactant/polymer mixed system is related to the adsorption of a complex derived from the mixture onto a target surface. The phase map for the system sodium dodecyl sulfate (SDS, a model anionic surfactant)/pDMDAAC (poly(dimethyl diallyl ammonium chloride), a cationic polymer) shows behavior very typical of surfactant/oppositely charged polyelectrolyte mixtures. The predominant feature is a broad, two-phase region in the phase map which lies asymmetrically around the 1:1 stoichiometry of surfactant charge groups to polymer charge units. The overall controlling principle driving the phase separation is charge compensation. Excess of polymer yields an isotropic solution, as does a great excess of surfactant (termed resolubilization). The phase separating in the SDS/pDMDAAC system is characterized by a positive zeta-potential when the polymer is in excess and a negative zeta-potential when the surfactant is in excess. The surface charge properties of the precipitated phases are essentially identical to those of target particles (ground borosilicate glass) dispersed at the same approximate position in the phase map, suggesting that the surfactant/polymer complex at the precipitation boundary is the same as that adsorbing onto the pigment particle. This conclusion is confirmed by depletion studies which allow the polymer adsorption density to be determined. For polymer-rich systems, essentially all of the surfactant adsorbs along with the polymer via a high-affinity isotherm with a plateau coverage of about 0.8 mg polymer/m (2). Surfactant-rich systems adsorb with a similar affinity, despite the mismatch of the complex charge matching that of the particle surface. Once adsorbed, these complexes are not readily removed by rinsing, though complexes adsorbed from SDS-rich systems will lose excess surfactant upon extreme dilution. Over a wide range of surfactant-rich compositions, from 1:1 stoichiometry out toward the resolubilization zone, a chemical analysis reveals that the surfactant/polymer precipitate species consists of a 1:1 charge complex with the addition of about 0.25 mol of surfactant/mol of complex. Resolubilization of these sparingly soluble species is achieved simply by dilution to below their solubility limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号