首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
A novel single-shot in vivo spectral editing method is proposed in which the signal to be detected, is regenerated anew from the thermal equilibrium magnetization of a source to which it is J-coupled. The thermal equilibrium magnetization of the signal to be detected together with those of overlapping signals are suppressed by single-shot gradient dephasing prior to the signal regeneration process. Application of this new strategy to in vivo GABA editing using selective homonuclear polarization transfer allows complete suppression of overlapping creatine and glutathione while detecting the GABA-4 methylene resonance at 3.02 ppm with an editing yield similar to that of conventional editing methods. The NAA methyl group at 2.02 ppm was simultaneously detected and can be used as an internal navigator echo for correcting the zero order phase and frequency shifts and as an internal reference for concentration. This new method has been demonstrated for robust in vivo GABA editing in the rat brain and for study of GABA synthesis after acute vigabatrin administration.  相似文献   

2.
Spectroscopic proton image data recorded with the aid of a gradient-echo spectroscopic imaging pulse sequence are reported. A postdetection processing method is suggested which permits correction of artifacts due to inhomogeneity, susceptibility, and chemical-shift resonance offsets. That is, apart from the spectral information available in this way, better spatial resolutions can be achieved. The method is demonstrated by resonance-offset corrected images of the human finger in vivo. Moreover, resonance-line selective and spectroscopically resolved diffusion-weighted images and diffusivity maps rendered with the aid of the same postdetection procedure are shown.  相似文献   

3.
Nuclear magnetic resonance (NMR) longitudinal (T1) and transverse (T2) relaxation parameters have been evaluated for protein solutions, cellular suspensions and tissues using both data from our laboratory and the extensive literature. It is found that this data can be generalized and explained in terms of three water phases: free water, hydration water, and crystalline water. The proposed model which we refer to as the FPD model differs from similar models in that it assumes that free and hydration water are two phases with distinct relaxation times but that T1 = T2 in each phase. In addition there is a single correlation time for each rather than a distribution as assumed in most other models. Longitudinal decay is predicted to be single exponent in character resulting from a fast exchange between the free and hydration compartments. Transverse decay is predicted to be multiphasic with crystalline (T2 10 μsec), hydration (T2 10 sec) and free (T2 100 sec) water normally visible. The observed or effective transverse relaxation times for both the hydration and free water phases are greatly affected by the crystalline phase and are much shorter than the inherent relaxation times.  相似文献   

4.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号