首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microwave spectrum of the two chlorine isotopic species of epichlorohydrin (CH2OCHCH2Cl) is reported. The structure is a gauche conformation with the Cl atom twisted toward the oxygen side of the ring. The observed rotational constants (in MHz) and centrifugal distortion constants (in kHz) are: C2H3OCH235Cl; A = 13 373.02, B = 2080.353, C = 1932.469, ΔJK = ? 6, ΔK = 2400, δJ = ? 0.43, δK = 17, HKJ = ? 0.13, HK = 570, hJK = 0.061, hK = ? 5.1: C2H3OCH237Cl; A = 13 361.24, B = 2028.853, C = 1887.990, ΔJK = 0.31, ΔK = 1669., δJ = ? 0.16, δK = 54.1.  相似文献   

2.
The microwave spectra of two conformations of chloromethyl oxirane (CH2OCHCH235Cl, epichlorohydrin) is reported. In the gauche-2 form the chlorine is situated trans to the oxygen, in the cis form the chlorine is cis to the ring. The rotational constants in megahertz are gauche-2; A = 12 739.35, B = 2066.83, C = 1881.49, and cis; A = 8378.66, B = 2840.67, C = 2510.55.  相似文献   

3.
An extensive study of the microwave spectrum of cyanamide has been undertaken, the analysis being based in part on semirigidbender calculations by the methods of Bunker and Szalay. Inversion lines of NH2CN, K?1 = 2 aQ branches and a number of vibrational satellites of the J = 2?1 transition were observed. A two-vibrational-state Hamiltonian was used to fit simultaneously the 0+ and 0? microwave data and yielded rotational constants X, Y, Z, DJ, DJK, d1, HJK as well as the inversion splitting and the μyz-connecting matrix element. Vibrational satellite data of seven isotopic species and infrared frequencies of NH2CN were included in the semirigid bender calculations: The NCN spine is nonlinear by ca. 5° in the equilibrium structure of the molecule. Also, rNHA? = 0.9994 + 0.0144?2; <HNH/2 = 60.39° ? 0.1134?2; rNCA? = 1.3301 + 0.0327?2 (? is the inversion angle in rad); rCN = 1.1645 A? fixed. The inclusion of the NC bond flexing was necessary in order to reproduce the observed vibrational satellite patterns of NH2CN, NHDCN, and ND2CN. The barrier to inversion of the amino group is 510 ± 6 cm?1 with minima at ±45.0 ±0.2°. The inversion dipole moment is 0.91 ± 0.02 Debye.  相似文献   

4.
A rotational assignment of approximately 80 lines with Ka′ = 0, 1, 2, 3, and 4 has been made of the 593 nm 2A12B2 band of NO2 using cw dye laser excitation and microwave optical double-resonance spectroscopy. Rotational constants for the 2B2 state were obtained as A = 8.52 cm?1, B = 0.458 cm?1, and C = 0.388 cm?1. Spin splittings for the Ka′ = 0 excited state levels fit a simple symmetric top formula and give (?bb + ?cc)2 = ?0.0483 cm?1. Spin splittings for Ka′ = 1 (N′ even) are irregular and are shown to change sign between N′ = 6 and 8. Assuming that the large inertial defect of 4.66 amu Å2 arises solely from A, a structure for the 2B2 state is obtained which gives r (NO) = 1.35 A? and an ONO angle of 105°. Alternatively, weighting the three rotational constants equally gives r = 1.29 A? and θ = 118°.  相似文献   

5.
The J = 4 ← 3 and J = 3 ← 2 rotational transitions of 1-phosphapropyne, CH3CP, between 26.5 and 40 GHz have been studied by microwave spectroscopy. The spectrum shows the characteristic vibration-rotation satellite patterns associated with a C3v symmetric rotor. Apart from the most abundant isotope variant, the species 12CD312C31P, 12CD2H12C31P, 12CH2D12C31P, 13CH312C31P, 12CH313C31P, 13CD312C31P, and 12CD313C31P have also been studied. For 12CH312C31P the rotational constants B0 = 4991.339 ± 0.003 MHz, DJ = 0.823 ± 0.092 kHz, DJK = 66.59 ± 0.18 kHz have been determined. From these data the following structural parameters have been derived: rs(CH) = 1.107 ± 0.001 A?, ∠s(HCC) = 110.30 ± 0.09°, rs(CC) = 1.465 ± 0.003 A?, r0(CP) = 1.544 ± 0.004 A?. The dipole moment has been determined as 1.499 ± 0.001 D by analysis of the Stark effect of the J = 3 ← 2, |K| = 1 line. The vibrational satellites (vs = 1, 2, and 3) have been studied and various vibration-rotation parameters derived.  相似文献   

6.
The ground state microwave spectrum of propyne is remeasured between 60 and 240 GHz with a molecular beam spectrometer. These high resolution measurements allows us to accurately determine the rotational constant and all the determinable quartic and sextic centrifugal distortion constants: B = 8 545 877.12 (12) kHz; DJ = 2.9423 (13) kHz; DJK = 163.423 (20) kHz; HJ = 0.0097 (40) Hz; HJK = 0.935 (136) Hz; and HKJ = 5.23 (27) Hz (95% confidence limits are shown in parentheses). The spectra of the [13C]isotopic species are also reinvestigated between 30 and 240 GHz with a video spectrometer. With the accurate rotational constants we derive from those spectra a new r8 structure is calculated for the CC bond lengths: r8(CC) = 1.4586 (2) A? and r8 (CC) = 1.2066 (2) A?.  相似文献   

7.
The rotational spectrum of methylene cyanide has been measured up to J = 62 and a total of 82 b-type transitions have been obtained. These data have been analyzed with a semirigid rotor Hamiltonian to give accurate rotational and centrifugal distortion constants. The rotational constants are (in MHz) A = 20882.7537 ≠ 0.017, B = 2942.3003. ≠ 0.0031, C = 2616.7225 ≠ 0.0031 The quartic centrifugal distortion constants are (in MHz)
ΔJ (1.855455 ≠ 0.014) x 10?3 ΔJK = (?6.79218 ≠ 0.027) x 10?2
ΔK (8.621628 ≠ 0.013) x 10?1 δJ = (4.892607 ≠ 0.016) x 10?4
δK = (6.7501 ≠ 0.29) x 10?3
The uncertainties are twice the standard deviations in the constants obtained from the least squares analysis, and represent approximately 95% confidence limits.  相似文献   

8.
The microwave spectrum of boron chloride difluoride, BClF2, has been investigated in the region 26.5–40.0 GHz. R-branch transitions belonging to the isotopic species 11B35Cl19F2, 11B37Cl19F2, and 10B35Cl19F2 have been observed and the derived rotational constants yield the following ground-state structural parameters: r0(BF) = 1.315 ± 0.006 A?, rs(BCl) = 1.728 ± 0.009 A?, < FBF = 118.1 ± 0.5°. The ground-state rotational constants of the most abundant species 11B35Cl19F2 are: A0 = 10 449.32 ± 0.13, B0 = 4705.811 ± 0.020, C0 = 3239.702 ± 0.026 MHz, ΔJK = 8.9 ± 1.7, and ΔJ = 1.86 ± 0.48 KHz. The asymmetry parameter κ = ?0.593291 and the inertial defect δ0 = 0.2361 amu Å2 which is consistent with that expected for this type of molecule if planar. The 35Cl quadrupole coupling constants for 11B35Cl19F2 are χaa = ?42.8 ± 1.0, χbb = 30.2 ± 1.5, χcc = 12.6 ± 1.5 MHz with the asymmetry parameter η = 0.41.  相似文献   

9.
Two-magnon Raman scattering in the planar quadratic antiferromagnet K2FeF4 is investigated. The temperature dependence of the energy shift is in good agreement with second-order Green-function theory, as is the linewidth at low temperature. Numerical results, including renormalization, are the Heisenberg exchange JkB = ?14.5 ± 0.7 K and the anisotropy Δ(T = 0) = gμBHA4|J|S = 0.18 ± 0.05, but with J[1 + Δ(T = 0)]kB = ?17.06 ± 0.10 K.  相似文献   

10.
New rotational transition frequencies and measurements of hyperfine structure on two transitions are reported for PH2D. All observed transitions are Q branch (ΔJ = 0) so only two independent rotational constants are obtained. These are A-C = 46 593.44 ± 0.67 MHz and κ(A-C) = 2B-A-C = ?34 545.9 ± 1.3 MHz. Nine transitions were fit to these parameters and the distortion parameter DJK to obtain DJK = 4.30 ± 0.04 MHz. Hyperfine structure due to spin-rotation interactions was observed on the 110 ← 111 transition at 6 024.645 MHz and on the 414 ← 404 transition at 20 815.334 MHz. Spin-rotation tensor components obtained are (Maa + Mbb)2 = (Maa + Mcc)2 = ?98 ± 3 kHz.  相似文献   

11.
The microwave spectrum of MnO3F has been remeasured and several corrections and new results have been obtained: B0 = 4129.141 MHz, DJ = 1.12 kHz, DJK = 1.87 kHz; α3B = 8.622, α5B = ? 11.994, α6B = 6.042, |q5| = 16.005, and |q6| = 8.456 MHz.  相似文献   

12.
From its microwave spectrum, 1-aziridineethanol,
CH2CH2NCH2CH2OH
is found to have a gauche OCCN configuration, maintained by an OH?N-type hydrogen bond. The normal species rotational constants (MHz), A = 8528.87(25), B = 2069.74(2), and C = 2020.41(2), are consistent with a small (~6°) distortion from the “staggered” configuration about the central CN bond. Assuming a “normal” hydroxyl group, the hydroxy d1 data suggest a decrease in the O?N distance upon bridge deuteration of ~0.003 Å. The dipole moment is 2.77(5) D, with 2.34(3), 1.45(6), and 0.3(3) D “a,” “b,” and “c” components, respectively.  相似文献   

13.
The transitions J = 1 ← 0, K = 0; J = 2 ← 1, K = 0; and J = 2 ← 1, K = 1 of CH3I and CD3I were measured using a Stark-modulated microwave spectrometer. Iodine quadrupole coupling strengths were analyzed to determine variations with deuterium substitution on the methyl group and variations with centrifugal distortion. Quadrupole coupling strengths were described by the expression eQq0 + aJ(J + 1) + bK2 + cK4J(J + 1). Explicit expressions are given for a, b, and c for a symmetric top in terms of molecular parameters. For CH3I eQq0 = ?1934.11 ± 0.02 MHz and for CD3I eQq0 = ?1928.95 ± 0.04 MHz. Rotational constants obtained are B(CH3I) = 7501.274 ± 0.002 MHz and B(CD3I) = 6040.298 ± 0.007 MHz. The observed fractional change in halogen quadrupole coupling of 0.0027 is related to previous results for methyl chloride and methyl bromide.  相似文献   

14.
The heat capacity of synthetic α-Fe2O3 has been measured in the range 300–1050K by adiabatic shield calorimetry with intermittent energy inputs and temperature equilibration in between. A λ-type transition, related to the change from antiferro- to paramagnetism in the compound, is delineated and a maximum heat capacity of about 195 JK?1 mole?1 is observed over a 3 K interval around 955 K. Values of thermodynamic functions have been derived and CP (1000K), [H0(1000K)-H0(0)], and [S0(1000K)-S0(0)] are 149.0JK?1 mole?1, 115.72 kJ mole?1, and 252.27 JK?1 mole?1, respectively, after inclusion of earlier low-temperature results [X0 (298.15K)-X0(0)]. The non-magnetic heat capacity is estimated and the thermodynamic properties of the magnetic transition evaluated. The results are compared with spin-wave calculations in the random phase approximation below the Néel temperature and the Oguchi pair model above. An upper estimate of the total magnetic entropy gives 32.4JK?1 mole?1, which compares favorably with that calculated for randomization of five unpaired electron spins on each iron, ΔS = 2R ln 6 = 29.79 JK?1 mole?1 for α-Fe2O3. The critical exponent α in the equation Cm = (Aα) [(|Tn?T|/Tn)?1] + B is ?(0.50±0.10) below the maximum and 0.15±0.10 above, for Tn = 955.0K. The high temperature tail is discussed in terms of short range order.  相似文献   

15.
The Stark effect of CH3F is extensively used as a calibration standard in laser Stark spectroscopy. The accepted value for the dipole moment of the ground vibrational state of CH3F is less accurate than the precision of laser Stark measurements, and questions have also been raised about the literature value. New molecular beam spectroscopy measurements have been made of the ratio of the Stark effect in the J = 1, K = 1 and J = 2, K = 2 CH3F states to that of the 0110 vibrational state of OCS. The results were μ1.1(CH3F)μ010(OCS) = 2.638905(23) and μ2.2(CH3F)μ010(OCS) = 2.63894(10). This produces a dipole moment of 1.85840 D with precision relative to OCS of 10 ppm and absolute accuracy of 43 ppm.  相似文献   

16.
The microwave and millimeter wave spectra of isothiocyanic acid, HNCS, in the ground vibrational state have been investigated in the frequency region 8–300 GHz. The a-type R-branch transitions have been assigned up to J = 25 and Ka = 4, and the a-type qQ1 branch transitions up to J = 45. No b-type transitions could be identified in the frequency region covered. The far infrared data reported by Krakow, Lord, and Neely [J. Mol. Spectrosc., 27, 148 (1968)] were combined with our millimeter wave data in order to determine reliable spectroscopic constants. The rotational Hamiltonian, Watson's formalism with S reduction, has been extended empirically to higher order to facilitate the fitting of the large centrifugal distortion effects. The obtained constants are:
A = 1357.3 GHz; B = 5883.4627 MHz; C = 5845.6113 MHz; DJ = 1.19393 kHz; DJK = ?1025.37 kHz; DK = 51.57 GHz; d1 = ?13.781 Hz; d2 = ?4.59 Hz.
The 14N quadrupole coupling constant has also been determined: χaa = 1.114 MHz.  相似文献   

17.
Measurements of the microwave spectrum of the C4v molecule IF5 in the excited vibrational states v5(B1) = 1 and v9(E) = 1 are reported for the transitions J4 → 5, 5 → 6, 6 → 7, 8 → 9, and 9 → 10 (27–55 GHz). The Coriolis resonance interaction between these two states is analyzed by diagonalization of Hamiltonian matrices of dimension 3 × (2J + 1) in which all (Δlk) = (±2, ±2)(q+), (±2, ±2)(q?), and (0, ±4)(R6) interactions are included as off-diagonal terms in addition to the v5 = 1 ? v9 = 1, l9 = ±1(R59) Coriolis interaction. In the v9 = 1 state spectra, the B1B2l-doubling of the kl = ?1 transitions and A1A2 splittings of the kl = ?3 transitions and B1B2 splittings of the kl = +3 transitions, all enhanced by the Coriolis resonance, have been observed and measured. Least-squares refined rovibrational parameters for the v5 = 1 and v9 = 1 states are reported and a preliminary value for the rotational constant C9 has been obtained.  相似文献   

18.
Cyanobutadiyne (cyanodiacetylene), HCCCCCN, is sufficiently stable at low pressures to permit its rotational spectrum to be studied by microwave spectroscopy. The spectrum consists of a series of R-branch transitions typical of a linear molecule. The transitions with J = 9 to 14 which lie between 26.5 and 40.0 GHz have been measured for the vibrational ground state. Transitions have also been detected in natural abundance for all possible singly substituted 13C and 15N isotopic species. Deuteriated cyanobutadiyne, DCCCCCN, has also been synthesized and its ground state spectrum recorded. These measurements have enabled a complete substitution structure to be derived for the first time for a polyacetylene: r8(HCa) = 1.0569 ± 0.001, r8(CaCb) = 1.2087 ± 0.001, r8(CbCc) = 1.3623 ± 0.003, r8(CcCd) = 1.2223 ± 0.004, r8(CdCe) = 1.3636 ± 0.003, r8(CeN) = 1.1606 ± 0.001 A? (10?10m). The spectroscopic parameters for the ground state are B0 = 1331.3313 ± 0.001 MHz and D0 = 0.0257 ± 0.002 KHz. The dipole moment, determined from the Stark effects of the J = 9 and 10 lines, is 4.33 ± 0.03 Debye.  相似文献   

19.
A millimeter-wave spectrometer having a sensitivity of 4 × 10?10 cm?1 in the 2-mm region has been constructed for observation of extremely weak millimeter-wave spectra of gases. It has been used to measure JJ, K = 0 ← 3 transitions in PH3 and JJ, K = 0 ← 3 as well as K = ±1 ← ±4 transitions in PD3. The B0 and C0 spectral constants (in MHz) are: for PH3, B0 = 133 480.15 ± 0.12 and C0 = 117 488.85 ± 0.16; for PD3, B0 = 69 471.10 ± 0.03 and C0 = 58 974.37 ± 0.05. The effective ground-state values obtained for the bond angle and bond length are: for PH3, r0 (A?) = 1.4200 and α0(o) = 93.345; for PD3, r0 (A?) = 1.4176 and α0(o) = 93.359. The corresponding zero-point-average values were calculated to be: for PH3, rz (A?) = 1.42699 ± 0.0002 and αz(o) = 93.2287; for PD3, rz (A?) = 1.42265 ± 0.0001 and αz(o) = 93.2567 ± 0.004. For both species, the equilibrium values are re (A?) = 1.41159 ± 0.0006 and αe(o) = 93.328 ± 0.02.  相似文献   

20.
The gas phase infrared spectra of monoisotopic H3Si35Cl and H3Si37Cl have been studied in the ν1ν4 region near 2200 cm?1 with a resolution of 0.012 and 0.04 cm?1, respectively, and rotational fine structure for ΔJ = ±1 branches has been resolved. In addition, some information on ν3 + ν4 of H3Si35Cl near 2750 cm?1 has been obtained. ν1 and ν4 are weakly coupled by Coriolis x, y resonance, BΩ14ζ14 ~ 2 × 10?3cm?1, only the upper states K′ = 2, l = 0 and K′ = 1, l = ?1 being substantially affected. Local perturbation due to rotational l(±1, ±1)-type resonance with ν3 + ν5+1 + ν6+1 and ν3 + ν5+1 + ν6?1 is revealed in the ΔK = +1 and ?1 branches, respectively. From a fit of the experimental line positions, standard deviations of 1.4 and 3.8 × 10?3 cm?1, respectively, to a model with five interacting levels conventional excited state parameters and interaction constants have been obtained. In H3Si35ClH3Si37Cl the fundamentals are ν1, 2201.94380(15)2201.9345(7) and ν4, 2209.63862(8)2209.6254(2) cm?1, respectively. Q branches of the “hot” band (ν3 + ν4) ? ν3 and of ν4 of the 29Si and 30Si species have been detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号