首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The structures of tetrachloro-p-benzoquinone and tetrachloro-o-benzoquinone (p- and o-chloranil) have been investigated by gas electron diffraction. The ring distances are slightly larger and the carbonyl bonds slightly smaller than in the corresponding unsubstituted quinones. The molecules are planar to within experimental error, but small deviations from planarity such as those found for the para compound in the crystal are completely compatible with the data. Values for the geometrical parameters (ra distances and bond angles) and for some of the more important amplitudes (l) with parenthesized uncertainties of 2σ including estimated systematic error and correlation effects are as follows. Tetrachloro-p-benzoquinone: D2h symmetry (assumed); r(CO) = 1.216 Å(4), r(CC) = 1.353 Å(6), r(C-C) = 1.492 Å(3), r(C-Cl) = 1.701 Å(3), ∠C-C-C = 117.1° (7), ∠CC-C1 = 122.7° (2), l(CO)= 0.037 Å(5), l(CC) = l(C-C) - 0.008 Å(assumed) = 0.049 Å(7), and l(C-Cl) = 0.054 Å(3). Tetrachloro-o-benzoquinone: C2v symmetry (assumed); r(CO) = 1.205 Å(5), r(CC) = 1.354 Å(9), r(Ccl-Ccl) = 1.478 Å(28), r(Co-Ccl) = 1.483 Å(24), r(Co-Co) = 1.526 Å(2), r(C-Cl)= 1.705 Å(3), <Co-CO = 121.0° (22), ∠C-C-C = 117.2° (9), ∠Cco, ClC-Cl = 118.9° (22), ∠Cccl, ClC-Cl = 122.2°(12), l(CO) = 0.039 Å(5), and l(Ccl-Ccl) = l(Co-Ccl) = l( Co-Co) = l(CC) + 0.060 Å(equalities assumed) = 0.055 Å(9). Vibrational'shortenings (shrinkages) of a few of the long non-bond distances have also been measured.  相似文献   

2.
The molecular structure of gaseous 2-cyclopentene-1,4-dione has been studied by electron diffraction. The molecule is planar to within the experimental error. The results obtained for some of the more important parameters with estimated uncertainties of 2σ are r(C-H) = 1.093 Å (0.013), r(C0) = 1.208 Å (0.002), r(CC) = 1.341 Å (0.005), r(CH-CO) = 1.493 Å (0.005), r(CO-CH2) = 1.525 Å (0.005), ∠CC-C = 110.4° (0.3), ∠CH-CO = 124.9° (1.1), ∠CC-H. = 118.7° (5.8), ∠H-C-H = 113.2° (8.7) l(C-H) = 0.0853 A (0.0113), l(CO) = 0.0428 Å (0.0021), l(CC) = 0.0448 Å (0.0037) and l(C-C) = 0.0561 Å (0.0029). The structure is discussed in connection with the structures of related molecules.  相似文献   

3.
The molecular structure of methane sulphonyl fluoride in the vapour state was studied by electron diffraction. Assuming a value of 2.480A?for the distance between the oxygen atoms from a microwave determination, the following geometrical parameters (ra structure) have been obtained: r(C-H) = 1.093±0.010Å, r(S-O) = 1.410±0.003Å, r(S-F) = 1.561 ±0.004Å, r(S-C) = 1.759±0.006Å, ∠F-S-C = 98.2±1.5°, ∠-S-F = 106.2±0.4°, ∠-O-S-O = 123.1 ±1.5° and ∠H-C-H = 112.9±1.9°. All the observed variations in the molecular geometries of (CH3)2SO2, CH3SO2Cl, CH3SO2F and SO2F2 may be accounted for by the valence shell electron pair repulsion theory. It is particularly advantageous to combine electron diffraction and microwave data in studying sulphone molecular geometries.  相似文献   

4.
The molecular structure and internal rotation of Si2F6 were investigated by electron diffraction of gases. The following r0α -values for the geometric parameters were obtained: r(Si-Si) = 2.317 ± 0.006 Å, r(Si-F) = 1.564 ± 0.002 Å and ∠FSiF = 108.6° ± 0.3°. The barrier to internal rotation was found to be between 0.51 ± 0.10 and 0.73 ± 0.14 kcal mol?1, depending on different assumptions of temperature drop due to gas expansion in the nozzle. Attempts were made to calculate the potential barriers for Si2X6 molecules with X as H, F and Cl, using the CNDO/2 approximation. When the 3d orbitais of silicon are taken into account, these results differ widely from the experimental values in the case of Si2Fg6 and Si2Cl6. Neglecting the 3d orbitais of silicon the theoretical and experi- mental potential barriers agree very well.  相似文献   

5.
The following bond lengths and bond angles have been deduced from a vapour phase electron diffraction study of (CH3)2NSO2N(CH3)2: r(C-H) 1.114 ± 0.005 Å, r(S-O) 1.432 ± 0.010 Å, r(N-C) 1.475 ± 0.013 Å, r(S-N) 1.651 ± 0.003 Å, ∠N-C-H 109.3 ± 2.0°, ∠C-N-C 118.0 ± 302°, ∠S-N-C 115.2 ± 1.1°, ∠N-S-N 110.5±1.3° and ∠O-S-O 114.7±2.5°. The sulphur bond configuration and the prevailing conformation, which was identical to that in the crystal, are discussed in relation to analogous sulphide and sulphoxide derivatives.  相似文献   

6.
The molecular structure of tetrafluoro-1,3-diselenetane was determined in the gas phase by electron diffraction. A planar ring configuration with the following geometric parameters (rg-values) was obtained:r(Se-C) = 1.968 ± 0.004 Å, r(C-F) = 1.353 ± 0.003 Å, ∠SeCSe = 98.5° ± 0.4°, ∠FCF = 106.3 ± 0.8°. SCF-MO calculations in the CNDO/2 approximation confirm the planarity of the four membered ring and give a plausible explanation for the remarkably short Se-C bond length in the ring which in spite of ring strain is shorter than in Se(CF3)2. There exists a strong bonding interaction between the diagonal selenium atoms which amounts to about one fourth of a normal single bond strength.  相似文献   

7.
The molecular structure of gaseous dichloromaleic anhydride has been investigated by electron diffraction at a nozzle-tip temperature of 164–170°C. The molecule is planar to within experimental error, but small deviations from planarity corresponding to torsion up to about 10° around the carbon-carbon single bonds cannot be ruled out. Values of the more important rα distances and angles with estimated 2σ uncertainties are r(CO) = 1.188(2) Å, r(CC) = 1.332(5) Å, r(C-O) = 1.389(3) Å, r(C—C) = 1.495(3) Å, r(C—Cl) = 1.685(2) Å, ∠CC-Cl = 129.4(2)°, ∠C-CO = 128.5(4)° and ∠CC—C = 107.9(2)°. The shortening of the carbonyl bond relative to that in maleic anhydride itself is discussed in terms of a possible general effect of vicinal substitution.  相似文献   

8.
A gas electron diffraction study yielded the following geometrical parameters for hexamethylcyclotrisilazane: r(Si-N) = 1.728 ± 0.004 Å, r(Si-C) = 1.871 ± 0.004 Å, r(C-H) = 1.124 ± 0.007 Å, ∠N-Si-N = 108.4 ± 1.0°, ∠Si-N-Si = 126.8 ± 0.8°, ∠C-Si-C = 108.9 ± 2.3°, ∠H-C-H = 111.6 ± 0.9°. The (SiN)3 ring was found to be puckered but the deviation from planarity is relatively small. Details of the ring shape could not be determined. The degree of ring puckering in six-membered rings with alternating atoms can be roughly predicted from the bond angles in analogous non-cyclic molecules.  相似文献   

9.
The molecular structures of C2F5H and C2H5F have been studied using gas-phase electron diffraction data collected on the Balzers KDG2 instrument. The following values for the main independent geometrical parameters were obtained (ra values with e.s.d. in parentheses): in C2F5H, C-C = 1.525(4) Å, C-F(CHF2) = 1.347 Å, C-F(CF3) = 1.327 Å [C-F(av.) = 1.335(2) Å], ∠CCF(av.) = 110.0(2)°; in C2H5F, C-C = 1.502(5) Å, C-F = 1.397(4) Å, C-H = 1.097(2) Å. ∠CCF = 110.4(2)°, ∠CCH(av.) = 113.6(4)°. Evidence is presented to show that the electron diffraction data for C2H5F are not compatible with values for the bond angles deduced spectroscopically.  相似文献   

10.
The electron diffraction study of azetidine yielded the following main geometrical parameters (ra structure): dihedral angle (the angle between the C-C-C and C-N-C planes) φ = 33.1 ± 2.4°, r(C-N) = 1.482 ± 0.006Å, r(C-C) = 1.553 ± 0.009Å, r(C-H) = 1.107 ± 0.003Å, ∠C-N-C = 92.2 ± 0.4°, ∠C-C-C = 86.9 ± 0.4° and ∠C-C-N = 85.8 ± 0.4°.  相似文献   

11.
The molecular structure of tungsten oxytetrafluoride has been studied in the gas phase by electron diffraction. A square pyramidal model with molecular symmetryC4v, as indicated by vibrational spectroscopy, gives a good fit to the experimental data. Least squares refinement on the molecular intensity curves gives the following results for the principal geometrical parameters (uncertainties in parentheses are 2σ):ra(W=O) = 1.666 (0.007)Å,ra(W-F)= 1.847 (0.002)Å, ∠OWF = 104.8 (0.6)°, ∠FWF = 86.2(0.3)°.  相似文献   

12.
NaBaCr2F9 and NaBaFe2F9 are monoclinic (SG P21n, No. 14). Lattice constants are found to be a = 7.318(2) Å, b = 17.311(4) Å, c = 5.398(1) Å, β = 91.14°(3) for chromium, and a = 7.363(2) Å, b = 17.527(4) Å, c = 5.484(1) Å, β = 91.50°(5) for iron. The structures were solved from 507 and 1113 X-ray reflections, respectively, for the Cr and Fe compounds; the corresponding Rw values are 0.025 and 0.037. The network is built from tilted double cis chains of octahedra (M2F9)3n?n [M = Cr, Fe], linked by Na+ and Ba2+ ions. The structures are compared to the previously described structures, particularly KPbCr2F9, whose symmetry and parameters are different. The difference is analyzed first in terms of tilted octahedra, but principally in terms of bond strengths and steric activity of the Pb2+ lone pair. A mechanism is proposed for the transformation between the structures of NaBaCr2F9 and KPbCr2F9.  相似文献   

13.
Bromoacetyl chloride and bromoacetyl bromide are studied by gas phase electron diffraction at nozzle-tip temperatures of 70°C and 77°C, respectively. Both compounds exist as mixtures of anti and gauche conformers. The mole fraction anti, with uncertainties estimated at , was found to be 0.474(0.080) for bromoacetyl chloride and 0.615(0.069) for bromoacetyl bromide. The results for the distance (ra)and angle (∠α) parameters, with parenthesized uncertainties of 2σ including estimated uncertainty in the electron wave length and correlation effects are as follows: (1) bromoacetyl chloride, r(C-H) = 1.086(0.062) Å, r(CO) = 1.188(0.009) Å, r(C-C) = 1.519(0.018) Å, r(C-Cl) = 1.789(0.011) Å, r(C-Br) = 1.935(0.012) Å, ∠C-CO = 127.6(1.3)°, ∠C-C-Cl = 111.3(1.1)°, ∠C-C-Br = 111.0(1.5)°, ∠H-C-H = 109.5°(assumed), \?/o (gauche torsion angle relative to 0° for the anti form) = 110.0°(assumed); (2) bromoacetyl bromide, r(C-H) =1.110(0.088) Å, r(C=O) = 1.175(0.013) Å, r(C-C) = 1.513(0.020) Å, r(CO-Br) = 1.987(0.020) Å, r(CH2-Br) = 1.915(0.020) Å, ∠C-CO = 129.4(1.7)°, ∠CH2-CO-Br = 110.7(1.5)°, ∠CO-CH2-Br = 111.7(1.8)°, ∠H-C-H = 109.5°(assumed), ∠ø (gauche torsion angle relative to 0° for the anti form) = 105.0°(assumed). The structural results are discussed in connection with the structures of related molecules.  相似文献   

14.
The molecular structure of CF3HgCH3 in the gas phase is determined by a joint analysis of electron diffraction and microwave data. The following geometric parameters (rav values) are derived: r(Hg—CH3) = 2.052(5) Å, r(Hg—CF3) = 2.116(4) Å. r(C-F) = 1.354(2) Å. r(C—H) = 1.079(14) Å, ∠.FCF = 105.7(0.2)° and ∠HCH = 107.0(1.5)°. Error limits are twice the standard deviations.  相似文献   

15.
The structure and conformation of dichloroacetyl chloride have been determined by gas-phase electron diffraction at nozzle temperatures of 20 and 119°C. The molecules exist as a mixture of two conformers with the hydrogen and oxygen atoms syn and gauche to each other. The composition (mole fraction of syn form) of the vapor was found to be 0.72 ± 0.06 and 0.73 ± 0.12 at 20 and 119°C, respectively, corresponding to almost equal energy for the two forms. The results for the distance (rg), angle ∠α and r.m.s. amplitude (l) parameters obtained at the two temperatures are entirely consistent. At 20°C the more important parameters, with estimated uncertainties of 3σ are: r(C-H) = 1.062(0.049)Å, r(C0) = 1.189(0.003)Å, r(C-C) = 1.535(0.008)Å, r(CO-Cl) = 1.752 (0.009)Å, r(CHCl-Cl) = 1.771(0.004)Å, ∠C-CO = 123.3(1.3)°, ∠C-CO-Cl = 113.9 (5.9)°, ∠C-CHCl—Cl = 109.5(1.5)°, ∠C1-C-Cl = 111.7(0.5)°, ∠Cl-C-H = 108.0(1.5), φ1 (HCCO torsion angle in the syn conformer) = 0.0° (assumed), φ2 (HCCO torsion angle in the gauche conformer) = 138.2(5.1)°.  相似文献   

16.
The structure of Pt(PF3)4 was reinvestigated making use of a new theory of intramolecular dynamic scattering. Derived molecular parameters were insensitive to the dynamic corrections. Refinements for this tetrahedral molecule yielded rg(Pt-P) = 2.229(5) Å, rg(P-F) = 1.550(4) Å, and ∠PtPF = 118.9°(0.4), with the indicated uncertainties representing 2.5σ. Amplitudes of vibration were also determined. Diffraction patterns were consistent with freely rotating PF3 groups.  相似文献   

17.
By means of gas phase electron diffraction it has been shown that the five-membered ring in 1,3-dimethyl-2-chloro-diazaboracyclopentane is essentially planar, while there seems to be a slight deviation from planarity about the N atoms. The most important bond lengths (ra) and bond angles are (standard deviations in parentheses): r(B-N) = 1.413(3) Å; r(C-N)av = 1.455(2) Å; r(B-Cl) = 1.770(4) Å; ∠NBN = 110.8(3)°; ∠B2N3C4 = 108.6(3)°; ∠N3C4C5 = 105.7(3)°.  相似文献   

18.
The crystal structures of the apatites Ba10(PO4)6F2(I), Ba6La2Na2(PO4)6F2(II) and Ba4Nd3Na3(PO4)6F2 (III) have been determined by single-crystal X-ray diffraction. All three compounds crystallize in a hexagonal apatite-like structure. The unit cells and space groups are: I, a = 10.153(2), c = 7.733(1)Å, P63m; a = 9.9392(4), c = 7.4419(5)Å, P6; III, a = 9.786(2), c = 7.281(1)Å, P3. The structures were refined by normal full-matrix crystallographic least squares techniques. The final values of the refinement indicators Rw and R are: I, Rw = 0.026, R = 0.027, 613 observed reflections; II, Rw = 0.081, R = 0.074, 579 observed reflections; III, Rw = 0.062, R = 0.044, 1262 observed reflections.In I, the Ba(1) atoms located in columns on threefold axes, are coordinated to nine oxygen atoms; the Ba(2) sites form triangles about the F site and are coordinated to six oxygen atoms and one fluoride ion. The fluoride ions are statistically displaced ~0.25 Å from the Ba(2) triangles. This displacement of the F ions is analogous to the displacement of OH ion in Ca10(PO4)6(OH)2.The structures of II and III contain disordered cations. In II there is disorder between La and Na in the column cation sites as well as triangle sites. In III, Nd and Na ions are ordered in the column sites, but there is disorder among Ba and the remaining Nd and Na ions in the triangle sites to give an average site population of 23Ba, 16Nd, 16Na. The coordination of the rare earth ions and Na ions in the ordered column sites are nine and six oxygens, respectively, in accord with the greater charge of the rare earth ions as compared with Na. The F ions in both II and III suffer from considerable disorder in position, and their locations are not precisely known.  相似文献   

19.
Hexafluoro-Dewar-benzene has been studied by the electron-diffraction method. A model with C2v symmetry gives excellent agreement between experimental and theoretical data. The structural parameters with error limits are (cf. Fig. 1): r(C1-C4)= 1.598 ±0.017 Å, r(C1-C2) = 1.505 ±0.005 Å, r(C2-C3) = 1.366 ± 0.015 Å, r(C1-F1) = 1.328±0.015 Å, r(C2-F2) = 1.319±0.007 Å, ∠F1C1C4 = 118.7±0.7°, ∠F2C2C3 = 133.6±0.7°, τ= 121.8±2.0°, and δ = -7.5±2.0°. Molecular orbital calculations by the CNDO/2 method gave τ = 119.8° and δ = ?4.2°.  相似文献   

20.
The molecular structure and conformation of cis-1,3-dichloro-1-propene have been determined by gas phase electron diffraction at a nozzle temperature of 90°C. The molecule exists in a form in which the chlorine atom of the methyl group and the carbon-carbon double bond are gauche to one another. The results for the distance (rg) and angle (∠α) parameters are: r(C-H) = 1.078(10)Å, r(CC) = 1.340(5)Å, r(C-C) = 1.508(7)Å, r( =C-Cl) = 1.762(3)Å, r(C-Cl) = 1.806(3)Å, ∠Cl-C-C = 111.7°(1.8), ∠(CC-C) = 125.5°(1.5), ∠Cl-CC = 124.6°(1.6) and ∠H-C-Cl = 111°(5). The torsion-sensitive distances close to the gauche form can be approximated using a dynamic model with a quartic double minimum potential function of the form V(Φ) = V0[1 + (ΦΦ04 - 2(ΦΦ0)2], where Vo = 1.1(8) kcal mol?1 and Φ0 = 56°(5) (Φ = 0 corresponds to the anti form).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号