首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DYNAMICS OF A TWO-CRACK ROTOR   总被引:1,自引:0,他引:1  
The effect of the presence of the single transverse crack on the response of the rotor has been a focus of attention for many researchers. In the present work a simple Jeffcott rotor with two transverse surface cracks has been studied. The stiffness of such a rotor is derived based on the concepts of fracture mechanics. Subsequently, the effect of the interaction of the two cracks on the breathing behavior and on the unbalance response of the rotor is studied. When the angular orientation of one crack relative to the other is varied, significant changes in the dynamic response of the rotor are noticed. A special case of practical importance of a two-crack rotor is one when one of the cracks is assumed to remain open always whereas the other can breathe like a fatigue crack. This simulates a transverse crack in an asymmetric rotor. Effect of orientation of the breathing crack with respect to the open crack on the dynamic response is studied in detail. The results of the present study will be useful in diagnosing fatigue cracks in real rotors, which invariably have some asymmetry.  相似文献   

2.
A novel method is proposed for calculating the natural frequencies of a multiple cracked beam and detecting unknown number of multiple cracks from the measured natural frequencies. First, an explicit expression of the natural frequencies through crack parameters is derived as a modification of the Rayleigh quotient for the multiple cracked beams that differ from the earlier ones by including nonlinear terms with respect to crack severity. This expression provides a simple tool for calculating the natural frequencies of the beam with arbitrary number of cracks instead of solving the complicated characteristic equation. The obtained nonlinear expression for natural frequencies in combination with the so-called crack scanning method proposed recently by the authors allowed the development of a novel procedure for consistent identification of unknown amount of cracks in the beam with a limited number of measured natural frequencies. The developed theory has been illustrated and validated by both numerical and experimental results.  相似文献   

3.
Detection of a circumferential crack in a hollow section beam is investigated using coupled response measurements. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. This matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. The suitability of the mode coupling methodology is first demonstrated analytically. Laboratory test results are then presented for circular hollow section beams with artificially generated cracks of varying severity. It is shown that this method has the potential as a damage detection tool for mechanical structures.  相似文献   

4.
In this paper, a new method for detecting a multi-cracked beam-like structure subjected to a moving vehicle is presented. The crack model is adopted from fracture mechanics. The dynamic response of the bridge-vehicle system is measured directly from the moving vehicle. When moving along the structure, the moving vehicle causes small distortions in the dynamic response of the bridge-vehicle system at the crack locations. In general, these small distortions are difficult to detect visually. However, wavelet transform has recently emerged to be an effective method of detecting such small distortions. Large values (peaks) in the wavelet transform indicate the existence of the cracks. The locations of the cracks are pinpointed by positions of peaks of the wavelet transform and the velocity of the moving vehicle. Numerical results show that the method can detect cracks as small as 10% of the beam height. The proposed method is applicable for low velocity-movements while high velocity-movements are not recommended. The method presents an idea for measuring the vibration directly from the vehicle for crack detection problem in practice.  相似文献   

5.
An iterative modal analysis approach is developed to determine the effect of transverse cracks on the dynamic behavior of simply supported undamped Bernoulli-Euler beams subject to a moving mass. The presence of crack results in higher deflections and alters the beam response patterns. In particular, the largest deflection in the beam for a given speed takes longer to build up, and a discontinuity appears in the slope of the beam deflected shape at the crack location. Crack effects become more noticeable as crack depth increases. The effect of the inertia force due to the moving mass is, in general, qualitatively similar and additive to the effect of the crack. The exact effect of crack and mass depends on the speed, time, crack size, crack location, and the moving mass level. Other approximate methods, namely a stationary mass model and a single iteration technique, are also evaluated. The stationary mass approach is useful for light moving masses (<20% of beam mass) and cracks at mid-span. For other cases, the errors can be unacceptably large. The results of the single-iteration approximation are quite close to the iterative modal analysis approach, which indicates that this approximate solution is an excellent tool for the analysis of the moving mass problem.  相似文献   

6.
An energy-based numerical model is developed to investigate the influence of cracks on structural dynamic characteristics during the vibration of a beam with open crack(s). Upon the determination of strain energy in the cracked beam, the equivalent bending stiffness over the beam length is computed. The cracked beam is then taken as a continuous system with varying moment of intertia, and equations of transverse vibration are obtained for a rectangular beam containing one or two cracks. Galerkin's method is applied to solve for the frequencies and vibration modes. To identify the crack, the frequency contours with respect to crack depth and location are defined and plotted. The intersection of contours from different modes could be used to identify the crack location and depth.  相似文献   

7.
This paper investigates the coupled bending vibrations of a stationary shaft with two cracks. It is known from the literature that, when a crack exists in a shaft, the bending, torsional, and longitudinal vibrations are coupled. This study focuses on the horizontal and vertical planes of a cracked shaft, whose bending vibrations are caused by a vertical excitation, in the clamped end of the model. When the crack orientations are not symmetrical to the vertical plane, a response in the horizontal plane is observed due to the presence of the cracks. The crack orientation is defined by the rotational angle of the crack, a parameter which affects the horizontal response. When more cracks appear in a shaft, then the coupling becomes stronger or weaker depending on the relative crack orientations. It is shown that a double peak appears in the vibration spectrum of a cracked or multi-cracked shaft.Modeling the crack in the traditional manner, as a spring, yields analytical results for the horizontal response as a function of the rotational angle and the depths of the two cracks. A 2×2 compliance matrix, containing two non-diagonal terms (those responsible for the coupling) serves to model the crack. Using the Euler–Bernoulli beam theory, the equations for the natural frequencies and the coupled response of the shaft are defined. The experimental coupled response and eigenfrequency measurements for the corresponding planes are presented. The double peak was also experimentally observed.  相似文献   

8.
This paper employs the numerical assembly method (NAM) to determine the “exact” frequency–response amplitudes of a multiple-span beam carrying a number of various concentrated elements and subjected to a harmonic force, and the exact natural frequencies and mode shapes of the beam for the case of zero harmonic force. First, the coefficient matrices for the intermediate concentrated elements, pinned support, applied force, left-end support and right-end support of a beam are derived. Next, the overall coefficient matrix for the whole vibrating system is obtained using the numerical assembly technique of the conventional finite element method (FEM). Finally, the exact dynamic response amplitude of the forced vibrating system corresponding to each specified exciting frequency of the harmonic force is determined by solving the simultaneous equations associated with the last overall coefficient matrix. The graph of dynamic response amplitudes versus various exciting frequencies gives the frequency–response curve for any point of a multiple-span beam carrying a number of various concentrated elements. For the case of zero harmonic force, the above-mentioned simultaneous equations reduce to an eigenvalue problem so that natural frequencies and mode shapes of the beam can also be obtained.  相似文献   

9.
A model of a laminated composite beam including multiple non-propagating part-through surface cracks as well as installed PZT transducers is presented based on the method of reverberation-ray matrix (MRRM) in this paper. Toward determining the local flexibility characteristics induced by the individual cracks, the concept of the massless rotational spring is applied. A Timoshenko beam theory is then used to simulate the behavior of the composite beam with open cracks. As a result, transverse shear and rotatory inertia effects are included in the model. Only one-dimensional axial vibration of the PZT wafer is considered and the imperfect interfacial bonding between PZT patches and the host beam is further investigated based on a Kelvin-type viscoelastic model. Then, an accurate electro-mechanical impedance (EMI) model can be established for crack detection in laminated beams. In this model, the effects of various parameters such as the ply-angle, fibre volume fraction, crack depth and position on the EMI signatures are highlighted. Furthermore, comparison with existent numerical results is presented to validate the present analysis.  相似文献   

10.
A new simplified approach to modelling cracks in beams undergoing transverse vibration is presented. The modelling approach uses Euler-Bernoulli beam elements with small modifications to the local flexibility in the vicinity of cracks. This crack model is then used to estimate the crack locations and sizes, by minimizing the difference between the measured and predicted natural frequencies via model updating. The uniqueness of the approach is that the simplified crack model allows the location and damage extent to be estimated directly. The simplified crack model may also be used to generate training data for pattern recognition approaches to health monitoring. The proposed method has been illustrated using the experimental data on beam examples.  相似文献   

11.
An exact approach for free vibration analysis of a non-uniform beam with an arbitrary number of cracks and concentrated masses is proposed. A model of massless rotational spring is adopted to describe the local flexibility induced by cracks in the beam. Using the fundamental solutions and recurrence formulas developed in this paper, the mode shape function of vibration of a non-uniform beam with an arbitrary number of cracks and concentrated masses can be easily determined. The main advantage of the proposed method is that the eigenvalue equation of a non-uniform beam with any kind of two end supports, any finite number of cracks and concentrated masses can be conveniently determined from a second order determinant. As a consequence, the decrease in the determinant order as compared with previously developed procedures leads to significant savings in the computational effort and cost associated with dynamic analysis of non-uniform beams with cracks. Numerical examples are given to illustrate the proposed method and to study the effect of cracks on the natural frequencies and mode shapes of cracked beams.  相似文献   

12.
The problem of calculating the natural frequencies of beams with multiple cracks and frames with cracked beams is studied. The natural frequencies are obtained using a new method in which a rotational spring model is used to represent the cracks. For beams, dynamic stiffness matrices of order 4 are obtained in a recursive manner, according to the number of cracks, by applying partial Gaussian elimination. The Wittrick–Williams algorithm is used to compute the natural frequencies in the resulting transcendental eigenvalue problem. Published numerical examples for cracked beams are used for validation. The global dynamic stiffness matrix of a frame with multiply cracked members is then assembled. A published two bay frame example is used to evaluate the new method. The effect of changing the location of a crack in a two bay two storey frame is studied numerically, giving insight into the inverse problem of damage detection.  相似文献   

13.
An efficient method for nonlinear vibration analysis of mistuned centrifugal impellers with crack damages is presented. The main objective is to investigate the effects of mistuning and cracks on the vibration features of centrifugal impellers and to explore effective techniques for crack detection. Firstly, in order to reduce the input information needed for component mode synthesis (CMS), the whole model of an impeller is obtained by rotation transformation based on the finite element model of a sector model. Then, a hybrid-interface method of CMS is employed to generate a reduced-order model (ROM) for the cracked impeller. The degrees of freedom on the crack surfaces are retained in the ROM to simulate the crack breathing effects. A novel approach for computing the inversion of large sparse matrix is proposed to save memory space during model order reduction by partitioning the matrix into many smaller blocks. Moreover, to investigate the effects of mistuning and cracks on the resonant frequencies, the bilinear frequency approximation is used to estimate the resonant frequencies of the mistuned impeller with a crack. Additionally, statistical analysis is performed using the Monte Carlo simulation to study the statistical characteristics of the resonant frequencies versus crack length at different mistuning levels. The results show that the most significant effect of mistuning and cracks on the vibration response is the shift and split of the two resonant frequencies with the same nodal diameters. Finally, potential quantitative indicators for detection of crack of centrifugal impellers are discussed.  相似文献   

14.
The effects of a single-edge crack and its locations on the buckling loads, natural frequencies and dynamic stability of circular curved beams are investigated numerically using the finite element method, based on energy approach. This study consists of three stages, namely static stability (buckling) analysis, vibration analysis and dynamic stability analysis. The governing matrix equations are derived from the standard and cracked curved beam elements combined with the local flexibility concept. Approximation for the displacements using coupled interpolations based on the constant-strain, linear-curvature element (SC) has yielded results with reasonable accuracy. The numerical results obtained from the present finite element model are found to be in good agreement with those, both experimental and analytic, of other researchers in the existing literature. Results show that the reductions in buckling load and natural frequency depend not only on the crack depth and crack position, but also on the related mode shape. Analyses also show that the crack effect on the dynamic stability of the considered curved beam is quite limited.  相似文献   

15.
A method has been developed for determining the transient response of a beam. The beam is divided into several continuous Timoshenko beam elements. The overall dynamic stiffness matrix is assembled in turn. Using Leung's equation, we derive the overall mass and stiffness matrices which are more suitable for response analysis than the overall dynamic stiffness matrix. The forced vibration of the beam is computed by the precise time integration method. Three illustrative beams are discussed to evaluate the performance of the current method. Solutions calculated by the finite element method and theoretical analysis are also enumerated for comparison. In these examples, we have found that the current method can solve the forced vibration of structures with a higher precision.  相似文献   

16.
The reflection of ultrasound from partially contacting rough surfaces   总被引:1,自引:0,他引:1  
Ultrasound is commonly used to detect and size cracks in a range of engineering components. Modeling techniques are well established for smooth and open cracks. However, real cracks are often rough (relative to the ultrasonic wavelength) and closed due to compressive stress. This paper describes an investigation into the combined effects of crack face roughness and closure on ultrasonic detectability. A contact model has been used to estimate the size and shape of scatterers (voids) at the interface of these rough surfaces when loaded. The response of such interfaces to excitation with a longitudinal ultrasonic pulse over a wide range of frequencies has been investigated. The interaction of ultrasound with this scattering interface is predicted using a finite-element model and good agreement with experiments on rough surfaces is shown. Results are shown for arrays of equi-sized scatterers and a distribution of scatterer sizes. It is shown that the response at high frequencies is dependent on the size, shape, and distribution of the scatterers. It is also shown that the finite-element results depart from the mass-spring model predictions when the product of wave number and scatterer half-width is greater than 0.4.  相似文献   

17.
The influence of two transverse open cracks on the antiresonances of a double cracked cantilever beam is investigated both analytically and experimentally. It is shown that there is a shift in the antiresonances of the cracked beam depending on the location and size of the cracks. These antiresonance changes, complementary with natural frequency changes, can be used as additional information carrier for crack identification in double cracked beams. Experimental results from tests on plexiglas beams damaged at different locations and different magnitudes are found to be in good agreement with theoretical predictions. Based on the results of the present work, an efficient prediction scheme for crack localization and characterization in double cracked beams is proposed.  相似文献   

18.
李乐  李克非 《物理学报》2015,64(13):136402-136402
采用逾渗理论对含随机裂纹网络的孔隙材料渗透性进行研究. 开裂孔隙材料渗透率的影响因素包括裂纹网络的几何特征、孔隙材料本体渗透率以及裂纹开度, 本文使用连续区逾渗理论模型建立了渗透率的标度律. 对于裂纹网络的几何特征, 本文基于连续区逾渗理论并考虑裂纹网络的分形特征提出了有限区域内二维随机裂纹网络的连通度定义; 对随机裂纹网络的几何分析表明, 随机裂纹局部团簇效应会降低裂纹网络的整体连通性, 随机裂纹网络的标度指数并非经典逾渗理论给出的固定值, 而是随着网络的分形维数的减小而增大. 本文在网络连通度和主裂纹团的曲折度的基础上, 提出了开裂孔隙材料渗透率标度律的解析表达, K=K0(Km,b)(ρ-ρc)μ, 分别考虑了裂纹网络的几何逾渗特征 (ρ-ρc)μ、孔隙材料渗透率Km 以及裂纹开度比b; 对有限区域含有随机裂纹网络的孔隙材料渗透过程的有限元模拟表明, K0 在裂纹逾渗阈值附近与b呈指数关系, 但当裂纹的局部渗透率与Km比值高于106 后, 开度比b对渗透率不再有影响.  相似文献   

19.
In this paper, mode shapes of a cracked beam with a rectangular cross section beam are analysed using finite element method. The 3D beam element is applied for this finite element analysis. The influence of the coupling mechanism between horizontal bending and vertical bending vibrations due to the crack on the mode shapes is investigated. Due to the coupling mechanism the mode shapes of a beam change from plane curves to space curves. Thus, the existence of the crack can be detected based on the mode shapes: when the mode shapes are space curves there is a crack in the beam. Also, when there is a crack, the mode shapes have distortions or sharp changes at the crack position. Thus, the position of the crack can be determined as a position at which the mode shapes exhibit such distortions or sharp changes. While in previous studies using 2D beam element, distortions in the mode shapes caused by a small crack could not be detected, these distortions in the case using the 3D beam element can be amplified and inspected clearly by using the projections of the mode shapes on appropriate planes. The quantitative analysis is also implemented to relate the size and position of the crack with the observed coupled modes. These results can be applied for crack detection of a beam. In this paper, the stiffness matrix of a cracked element obtained from fracture mechanics is presented and numerical simulations of three case studies are provided.  相似文献   

20.
A compact fibre, phase-shifted Sagnac interferometer for ultrasound detection has been developed. The interferometer is a truly path-matched device, and therefore requires no path stabilization or heterodyning. It is a less expensive and more robust alternative to the heterodyne or path-stabilized Michelson interferometer. The device provides high spatial resolution of ultrasonic detection. It has been used in conjunction with conventional piezoelectric transducers (PZT) to detect Rayleigh and Lamb waves and to image a crack in a thin plate, rivet cracks in riveted plates, and for ultrasonic beam profiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号