首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 487 毫秒
1.
2.
智能可变形结构能感知周围环境的变化并做出适当的反应,其主要原理是利用智能材料层产生应变以达到驱动主体结构发生变形。含有智能材料压电纤维MFC的双稳态复合材料层合板可以通过智能驱动实时调整主体结构的形状,实现稳态构型之间的跳变。本文对中心点固支的MFC压电智能驱动双稳态复合材料层合板的稳态构型、跳变规律及其影响因素进行了系统地研究。研究内容主要包括:含MFC的双稳态层合板的稳态构型、分叉行为和驱动跳变分析。利用理论模型分析了层合板的长宽比、厚度尺寸、铺层方式和MFC粘贴位置对双稳态板分叉行为的影响,并预测了双稳态层合板的临界尺寸以及驱动跳变的临界电压。双稳态板的跳变是一个大变形的非线性行为,实现和控制跳变行为的研究是其应用的基础。本文的研究结果为新型压电材料驱动双稳态板的结构设计提供了一定的理论参考。  相似文献   

3.
It is well known that multiphase flow in porous media exhibits hysteretic behaviour. This is caused by different fluid–fluid behaviour if the flux reverses. For example, for flow of water in unsaturated soils the process of imbibition and drainage behaves differently. In this paper we study a new model for hysteresis that extends the current playtype hysteresis model in which the scanning curves between drainage and imbibition are vertical. In our approach the scanning curves are non-vertical and can be constructed to approximate experimentally observed scanning curves. Furthermore our approach does not require any book-keeping when the flux reverses at some point in space. Specifically, we consider the problem of horizontal redistribution to illustrate the strength of the new model. We show that all cases of redistribution can be handled, including the unconventional flow cases. For an infinite column, our analysis involves a self-similar transformation of the equations. We also present a numerical approach (L-scheme) for the partial differential equations in a finite domain to recover all redistribution cases of the infinite column provided time is not too large.  相似文献   

4.
We present an experimental investigation of the solid–fluid transition in a yield stress shear thinning physical gel (Carbopol® 940) under shear. Upon a gradual increase of the external forcing, we observe three distinct deformation regimes: an elastic solid-like regime (characterized by a linear stress–strain dependence), a solid–fluid phase coexistence regime (characterized by a competition between destruction and reformation of the gel), and a purely viscous regime (characterized by a power law stress-rate of strain dependence). The competition between destruction and reformation of the gel is investigated via both systematic measurements of the dynamic elastic moduli (as a function of stress, the amplitude, and temperature) and unsteady flow ramps. The transition from solid behavior to fluid behavior displays a clear hysteresis upon increasing and decreasing values of the external forcing. We find that the deformation power corresponding to the hysteresis region scales linearly with the rate at which the material is being forced (the degree of flow unsteadiness). In the asymptotic limit of small forcing rates, our results agree well with previous steady state investigations of the yielding transition. Based on these experimental findings, we suggest an analogy between the solid–fluid transition and a first-order phase transition, e.g., the magnetization of a ferro-magnet where irreversibility and hysteresis emerge as a consequence of a phase coexistence regime. In order to get further insight into the solid–fluid transition, our experimental findings are complemented by a simple kinetic model that qualitatively describes the structural hysteresis observed in our rheological experiments. The model is fairly well validated against oscillatory flow data by a partial reconstruction of the Pipkin space of the material’s response and its nonlinear spectral behavior.  相似文献   

5.
张宇  汪权 《计算力学学报》2017,34(6):725-731
为研究双稳态压电俘能系统的相关特性,首先,建立了外界激励作用下双稳态压电悬臂梁俘能系统的等效数学模型;其次,运用谐波平衡法计算获得了系统的动力响应方程,通过绘制的动力响应曲线发现了系统中幅值与功率的解均存在跳跃现象和多解的不稳定区域;最后,分析比较了不同参数对系统动力响应的影响特性。研究结果为优化双稳态压电悬臂梁俘能器的设计和应用提供了理论依据。  相似文献   

6.
In order to understand the phenomenon of reversible plasticity exhibited by shape memory alloys and other smart materials, we study an elementary prototypical model. Building on an original idea of Müller and Villaggio [17], we consider an inhomogeneous ensemble of bi-stable elements connected in series and loaded in a soft device. To interpret the fine structure of the hysteresis loops observed experimentally, we assume that the dynamics is maximally dissipative and investigate different evolutiona ry strategies for a “driven” system with external force changing quasi-statically. Our main result is that the inhomogeneity of the elastic properties leads to a distinctive hardening with serrations of a Portevin-Le Chatelier type and produces a realistic memory structure characterized by the “congruency” and “return point memory” properties. Received December 28, 2001 / Published online June 4, 2002 Dedicated to Ingo Müller on the occasion of his 65th birthday Communicated by Kolumban Hutter, Darmstadt  相似文献   

7.
Wang  Jun  Gu  Xiaojun  Xu  Yingjie  Zhu  Jihong  Zhang  Weihong 《Nonlinear dynamics》2021,103(2):1393-1414

This paper presents a thermomechanical model for pseudoelastic shape memory alloys (SMAs) accounting for internal hysteresis effect due to incomplete phase transformation. The model is developed within the finite-strain framework, wherein the deformation gradient is multiplicatively decomposed into thermal dilation, rigid body rotation, elastic and transformation parts. Helmholtz free energy density comprises three components: the reversible thermodynamic process , the irreversible thermodynamic process and the physical constraints of both. In order to capture the multiple internal hysteresis loops in SMA, two internal variables representing the transition points of the forward and reverse phase transformation, \(\phi _s^f\) and \(\phi _s^r\), are introduced to describe the incomplete phase transformation process. Evolution equations of the internal variables are derived and linked to the phase transformation. Numerical implementation of the model features an Euler discretization and a cutting-plane algorithm. After validation of the model against the experimental data, numerical examples are presented, involving a SMA-based vibration system and a crack SMA specimen subjected to partial loading–unloading case. Simulation results well demonstrate the internal hysteresis and free vibration behavior of SMA.

  相似文献   

8.
A numerical investigation of the generation of hysteresis cycles with two and four jumps in a shape memory oscillator is presented. The fast subsystem is examined using local stability and bifurcations. When the upper and lower attractors disappear, the fast subsystem can be stable or bi-stable. This leads to a classification of the bifurcation behaviors of the fast subsystem, i.e., the stable case and the bi-stable case, which are associated with different parameter conditions. For the stable case, the hysteresis cycles with two and four jumps are obtained by properly modulating the slow external forcing, and the associated dynamical mechanisms are analyzed. While for the bi-stable case, the transition mechanisms underlying the appearance of hysteresis cycles with two and four jumps are revealed by computing attraction domains of the attractors.  相似文献   

9.
We study the rate dependent response of a bistable chain subjected to thermal fluctuations. The study is motivated by the fact that the behavior of this model system is prototypical to a wide range of nonlinear processes in materials physics, biology and chemistry. To account for the stochastic nature of the system response, we formulate a set of governing equations for the evolution of the probability density of meta-stable configurations. Based on this approach, we calculate the behavior for a wide range of parametric values, such as rate, temperature, overall stiffness, and number of elements in the chain. Our results suggest that fundamental characteristics of the response, such as average transition stress and hysteresis, can be captured by a simple law which folds the influence of all these factors into a single non-dimensional quantity. We also show that the applicability of analytical results previously obtained for single-well systems can be extended to systems having multiple wells by proper definition of rate and of the transition stress.  相似文献   

10.
11.
Abspract The stress-strain behavior of carbon black filled rubber is recognized to be nonlinearly elastic in its main part (see e.g. Gent [1]). In addition, inelastic effects occur under monotonic and cyclic processes. The inelastic behavior includes nonlinear rate dependence as well as equilibrium hysteresis. Moreover, the first periods of a stress-strain curve differ significantly from the shape of subsequent cycles; a characteristic feature, which is called the Mullins effect, because it has been pointed out by Mullins [2]. All inelastic phenomena are strongly influenced by the volume fraction of the filler particles (see e.g. Payne [3], So and Chen [4], Meinecke and Taftaf [5]).The aim of the present paper is to design a constitutive model, representing this kind of material behavior as a phenomenological theory of continuum mechanics. In order to motivate the basic structure of the constitutive theory, a series of uniaxial experiments between 100% in tension and 30% in compression are presented and analyzed. First of all, monotonic strain controlled experiments show the nonlinear rate dependence of the stress response. Then, a series of inserted relaxation periods at constant strain yields the monotonic equilibrium stress-strain curve, which is strongly nonlinear and unsymmetric with respect to the origin. Finally, cyclic experiments under strain control display pronounced hysteresis behavior. The hysteresis effects are mainly rate dependent, but there exists also a weak equilibrium hysteresis (compare to similar observations of Orschall and Peeken [6]). The Mullins effect corresponds to a softening phenomenon during the first few cycles. By means of an appropriate preprocess, this effect was excluded during the above experiments. Apart from the Mullins effect, neither hardening nor significant softening phenomena were observed in the context of cyclic loadings.These results motivate the structure of a constitutive model of finite strain viscoplasticity: The total stress is decomposed into an equilibrium stress and an overstress, where the overstress is a rate dependent functional of the strain history. The overstress represents the rate dependence of the material behavior and tends asymptotically to zero during relaxation processes. The nonlinearity of the rate dependence is incorporated by means of a stress dependent relaxation time. The equilibrium stress is assumed to be a rate independent functional of the strain history. For this quantity, we make use of an arclength representation, which was originally introduced by Valanis [7]. In case of vanishing equilibrium hysteresis and vanishing rate dependence our constitutive model reduces to finite strain hyperelasticity, which is the first approximation of the constitutive properties. In more general cases the main shape of a stress-strain curve is determined by hyperelasticity, superimposed by rate dependent and equilibrium hysteresis. The representation of the Mullins effect is incorporated by a continuum damage model.Some numerical simulations at the end of the paper demonstrate that the presented theory is able to represent the observed phenomena qualitatively and quantitatively with sufficient approximation.  相似文献   

12.
Shape memory alloys (SMA) exhibit a number of features which are not easily explained by equilibrium thermodynamics, including hysteresis in the phase transformation and “reverse” shape memory in the high symmetry phase. Processing can change these features: repeated cycling can “train” the reverse shape memory effect, while changing the amount of hysteresis and other functional properties. These effects are likely to be due to formations of localised defects and these can be studied by atomistic methods. Here we present a molecular dynamics simulation study of such behaviour employing a two-dimensional, binary Lennard-Jones model. Our atomistic model exhibits a symmetry breaking, displacive phase transition from a high temperature, entropically stabilised, austenite-like phase to a low temperature martensite-like phase. The simulations show transformations in this model material proceed by non-diffusive nucleation and growth processes and produce distinct microstructures. We observe the generation of persistent lattice defects during forward-and-reverse transformations which serve as nucleation centres in subsequent transformation processes. These defects interfere the temporal and spatial progression of transformations and thereby affect subsequent product morphologies. During cyclic transformations we observe accumulations of lattice defects so as to establish new microstructural elements which represent a memory of the previous morphologies. These new elements are self-organised and they provide a basis of the reversible shape memory effect in the model material.  相似文献   

13.
We present a fully general, three dimensional, constitutive model for Shape Memory Alloys (SMAs), aimed at describing all of the salient features of SMA evolutionary response under complex thermomechanical loading conditions. In this, we utilize the mathematical formulation we have constructed, along with a single set of the model’s material parameters, to demonstrate the capturing of numerous responses that are experimentally observed in the available SMA literature. This includes uniaxial, multi-axial, proportional, non-proportional, monotonic, cyclic, as well as other complex thermomechanical loading conditions, in conjunction with a wide range of temperature variations. The success of the presented model is mainly attributed to the following two main factors. First, we use multiple inelastic mechanisms to organize the exchange between the energy stored and energy dissipated during the deformation history. Second, we adhere strictly to the well established mathematical and thermodynamical requirements of convexity, associativity, normality, etc. in formulating the evolution equations governing the model behavior, written in terms of the generalized internal stress/strain tensorial variables associated with the individual inelastic mechanisms. This has led to two important advantages: (a) it directly enabled us to obtain the limiting/critical transformation surfaces in the spaces of both stress and strain, as importantly required in capturing SMA behavior; (b) as a byproduct, this also led, naturally, to the exhibition of the apparent deviation from normality, when the transformation strain rate vectors are plotted together with the surfaces in the space of external/global stresses, that has been demonstrated in some recent multi-axial, non-proportional experiments.  相似文献   

14.
地震产生的周期荷载作用下,钢混桥墩结构表现出滞回行为。为描述滞回行为,研究者提出各类滞回模型,其中BWBN(Bouc-Wen-Baber-Noori)模型可以描述结构滞回行为的强度退化、刚度退化和捏拢效应等典型特征。此外,无迹卡尔曼滤波器UKF(unscented Kalman filter)算法是识别BWBN模型参数的高效方法,但当参数初始值与真实值的偏差过大及缺乏对系统的整体估计时,UKF算法识别过程受到局限。本文改进生成样本点规则,提出改进UKF算法。数值模拟结果表明,在无噪声条件下,改进UKF算法识别得到的参数估计值与准确值的误差平均为1.51%,最大误差为4%;在2%均方根RMS(root mean square)高斯白噪声条件下,误差平均为5.43%,最大误差为18%;在5%RMS高斯白噪声条件下,误差平均为8.9%,最大误差为26%和22%。改进UKF算法识别非线性滞回系统状态估计和BWBN模型参数更加准确和稳定。  相似文献   

15.
In a previous paper, we presented a (noncanonical) Hamiltonian model for the dynamic interaction of a neutrally buoyant rigid body of arbitrary smooth shape with N closed vortex filaments of arbitrary smooth shape, modeled as curves, in an infinite ideal fluid in \mathbbR3\mathbb{R}^3. The setting of that paper was quite general, and the model abstract enough to make explicit conclusions regarding the dynamic behavior of such systems difficult to draw. In the present paper, we examine a restricted class of such systems for which the governing equations can be realized concretely and the dynamics examined computationally. We focus, in particular, on the case in which the body is a smooth sphere. The equations of motion and Hamiltonian structure of this dynamic system, which follow from the general model, are presented. Following this, we impose the constraint of axisymmetry on the entire system and look at the case in which the rings are all circles perpendicular to a common axis of symmetry passing through the center of the sphere. This axisymmetric model, in our idealized framework, is governed by ordinary differential equations and is, relatively speaking, easily integrated numerically. Finally, we present some plots of dynamic orbits of the axisymmetric system.  相似文献   

16.
In this paper, we examine the influence of thermomechanical coupling on the behavior of superelastic shape memory alloys subjected to cyclic loading at different loading rates. Special focus is given to the determination of the area of the stress-strain hysteresis loop once the material has achieved a stabilized state. It is found that this area does not evolve monotonically with the loading rate for either transient or asymptotic states. In order to reproduce this observation analytically, a new model is developed based on the ZM model for shape memory alloys which was modified to account for thermomechanical coupling. The model is shown to predict the non-monotonic variation in hysteresis area to good accord. Experimentally observed variations in the temperature of SMA test samples are also correctly reproduced for lower strain rates.  相似文献   

17.
We establish a discrete lattice dynamics model and its continuum limits for nonlocal constitutive behavior of polyatomic cyclically closed linear chains being formed by periodically repeated unit cells (molecules), each consisting of \({n \geq 1}\) atoms which all are of different species, e.g., distinguished by their masses. Nonlocality is introduced by elastic potentials which are quadratic forms of finite differences of orders \({m \in \mathbf{N}}\) of the displacement field leading by application of Hamilton’s variational principle to nondiagonal and hence nonlocal Laplacian matrices. These Laplacian matrices are obtained as matrix power functions of even orders 2m of the local discrete Laplacian of the next neighbor Born-von-Karman linear chain. The present paper is a generalization of a recent model that we proposed for the monoatomic chain. We analyze the vibrational dispersion relation and continuum limits of our nonlocal approach. “Anomalous” dispersion relation characteristics due to strong nonlocality which cannot be captured by classical lattice models is found and discussed. The requirement of finiteness of the elastic energies and total masses in the continuum limits requires a certain scaling behavior of the material constants. In this way, we deduce rigorously the continuum limit kernels of the Laplacian matrices of our nonlocal lattice model. The approach guarantees that these kernels correspond to physically admissible, elastically stable chains. The present approach has the potential to be extended to 2D and 3D lattices.  相似文献   

18.
非对称铺层的复合材料层合板在存在热残余应力的情况下,具有双稳态性质.层合板的两个稳态之间仅需要一个适当的激励就可以互相转化,因此该结构在变体飞机上应用广泛.基于经典层合板理论,本文引入几何大变形建立了具有双稳态性质的复合材料层合板的能量泛函,提出了一个高阶的位移场函数,用瑞利里兹法推导出一组关于位移场函数系数的非线性方程组.结合牛顿迭代法和消元法求解非线性方程组,得到了层合板面外位移场.同时利用有限元软件ABAQUS,对复合材料层合板双稳态机理进行了数值模拟.选取了几组具有代表性的铺层进行计算,以有限元结果为基准,比较了本文的位移场结果与前人的结果,验证了高阶位移场函数的准确性.  相似文献   

19.
In this paper we propose a Maxwellian thermo-viscoelastic approach to the problem of phase transformation in shape memory alloys. An explicit temperature-dependent non-monotone piecewise linear stress–strain relation is considered and the corresponding free energy function is used to establish the heat propagation equation. The heat exchange between the material and its environment is also taken into account. The numerical simulations of three end-displacement rates lead to serrated hysteresis loops and result in inhomogeneous deformations and exothermic/endothermic behavior during loading/unloading tests. It is shown that the influence of the strain rate on the size and shape of the hysteresis loop is due in fact to the heat exchange between the bar and its environment. The predictions are compared qualitatively with experimental results.  相似文献   

20.
In this paper, we present a modified model describing the constitutive relation of viscoelastic dielectric elastomer (DE). The uniform uniaxial tension-recovery experiment was carried out at different stretching rates. Based on Yeoh hyper-elastic model, model-fitting approach is put forward to obtain the relationship between parameters of Yeoh model and stretching rate, thus the modified model was obtained. From the approximate relationship between harmonic motion and uniform reciprocating motion, the stress–strain curve in the recovery process was also identified through the hysteresis between stress and strain. The modified model, with concise form and evident physical concept, can describe the strong nonlinear behavior between deformation and mechanical stress of the material in a common stretching rate range (from 0.01s?1 to 0.8s?1 at least). The accuracy and reliability of the modified model was examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号