首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In this study we develop a gradient theory of small-deformation single-crystal plasticity that accounts for geometrically necessary dislocations (GNDs). The resulting framework is used to discuss grain boundaries. The grains are allowed to slip along the interface, but growth phenomenona and phase transitions are neglected. The bulk theory is based on the introduction of a microforce balance for each slip system and includes a defect energy depending on a suitable measure of GNDs. The microforce balances are shown to be equivalent to nonlocal yield conditions for the individual slip systems, yield conditions that feature backstresses resulting from energy stored in dislocations. When applied to a grain boundary the theory leads to concomitant yield conditions: relative slip of the grains is activated when the shear stress reaches a suitable threshold; plastic slip in bulk at the grain boundary is activated only when the local density of GNDs reaches an assigned threshold. Consequently, in the initial stages of plastic deformation the grain boundary acts as a barrier to plastic slip, while in later stages the interface acts as a source or sink for dislocations. We obtain an exact solution for a simple problem in plane strain involving a semi-infinite compressed specimen that abuts a rigid material. We view this problem as an approximation to a situation involving a grain boundary between a grain with slip systems aligned for easy flow and a grain whose slip system alignment severely inhibits flow. The solution exhibits large slip gradients within a thin layer at the grain boundary.  相似文献   

2.
This paper develops a gradient theory of single-crystal plasticity based on a system of microscopic force balances, one balance for each slip system, derived from the principle of virtual power, and a mechanical version of the second law that includes, via the microscopic forces, work performed during plastic flow. When combined with thermodynamically consistent constitutive relations the microscopic force balances become nonlocal flow rules for the individual slip systems in the form of partial differential equations requiring boundary conditions. Central ingredients in the theory are geometrically necessary edge and screw dislocations together with a free energy that accounts for work hardening through a dependence on the accumulation of geometrically necessary dislocations.  相似文献   

3.
This study develops a general theory for small-deformation viscoplasticity based on a system of microforces consistent with its own balance; a mechanical version of the second law that includes, via the microforces, work performed during viscoplastic flow; a constitutive theory that allows for dependences on plastic strain-gradients. The microforce balance and the constitutive equations—suitably restricted by the second law—are shown to be together equivalent to a flow rule that accounts for variations in free energy due to flow. When this energy is the sum of an elastic strain energy and a defect energy quadratic, isotropic, and positive definite in the plastic-strain gradients, the flow rule takes the form of a second-order parabolic PDE for the plastic strain coupled to the usual PDE arising from the standard macroscopic force balance and the elastic stress-strain relation. The classical macroscopic boundary conditions are supplemented by nonstandard boundary conditions associated with viscoplastic flow. As an aid to solution, a weak (virtual power) formulation of the nonlocal flow rule is derived.  相似文献   

4.
This paper develops a finite-deformation, gradient theory of single crystal plasticity. The theory is based on a system of microscopic force balances, one balance for each slip system, derived from the principle of virtual power, and a mechanical version of the second law that includes, via the microscopic forces, work performed during plastic flow. When combined with thermodynamically consistent constitutive relations the microscopic force balances become flow rules for the individual slip systems. Because these flow rules are in the form of partial differential equations requiring boundary conditions, they are nonlocal. The chief new ingredient in the theory is a free energy dependent on (geometrically necessary) edge and screw dislocation-densities as introduced in Gurtin [Gurtin, 2006. The Burgers vector and the flow of screw and edge dislocations in finite-deformation plasticity. Journal of Mechanics and Physics of Solids 54, 1882].  相似文献   

5.
This paper develops a gradient theory of single-crystal plasticity based on a system of microscopic force balances, one balance for each slip system, derived from the principle of virtual power, and a mechanical version of the second law that includes, via the microscopic forces, work performed during plastic flow. When combined with thermodynamically consistent constitutive relations the microscopic force balances become nonlocal flow rules for the individual slip systems in the form of partial differential equations requiring boundary conditions. Central ingredients in the theory are densities of (geometrically necessary) edge and screw dislocations, densities that describe the accumulation of dislocations, and densities that characterize forest hardening. The form of the forest densities is based on an explicit kinematical expression for the normal Burgers vector on a slip plane.  相似文献   

6.
We have been developing the theory of mechanism-based strain gradient plasticity (MSG) to model size-dependent plastic deformation at micron and submicron length scales. The core idea has been to incorporate the concept of geometrically necessary dislocations into the continuum plastic constitutive laws via the Taylor hardening relation. Here we extend this effort to develop a mechanism-based strain gradient theory of crystal plasticity. In this theory, an effective density of geometrically necessary dislocations for a specific slip plane is introduced via a continuum analog of the Peach-Koehler force in dislocation theory and is incorporated into the plastic constitutive laws via the Taylor relation.  相似文献   

7.
This contribution focuses on the development of constitutive models for the grain boundary region between two crystals, relying on the dislocation based polycrystalline model documented in (Evers, L.P., Parks, D.M., Brekelmans, W.A.M., Geers, M.G.D., 2002. Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation. J. Mech. Phys. Solids 50, 2403–2424; Evers, L.P., Brekelmans, W.A.M., Geers, M.G.D., 2004a. Non-local crystal plasticity model with intrinsic SSD and GND effects. J. Mech. Phys. Solids 52, 2379–2401; Evers, L.P., Brekelmans, W.A.M., Geers, M.G.D., 2004b. Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. Int. J. Solids Struct. 41, 5209–5230). The grain boundary is first viewed as a geometrical surface endowed with its own fields, which are treated here as distributions from a mathematical point of view. Regular and singular dislocation tensors are introduced, defining the grain equilibrium, both in the grain core and at the boundary of both grains. Balance equations for the grain core and grain boundary are derived, that involve the dislocation density distribution tensor, in both its regular and singular contributions. The driving force for the motion of the geometrically necessary dislocations is identified from the pull-back to the lattice configuration of the quasi-static balance of momentum, that reveals the duality between the stress and the curl of the elastic gradient. Criteria that govern the flow of mobile geometrically necessary dislocations (GNDs) through the grain boundary are next elaborated on these bases. Specifically, the sign of the projection of a lattice microtraction on the glide velocity defines a necessary condition for the transmission of incoming GNDs, thereby rendering the set of active slip systems for the glide of outgoing dislocations. Viewing the grain boundary as adjacent bands in each grain with a constant GND density in each, the driving force for the grain boundary slip is further expressed in terms of the GND densities and the differently oriented slip systems in each grain. A semi-analytical solution is developed in the case of symmetrical slip in a bicrystal under plane strain conditions. It is shown that the transmission of plastic slip occurs when the angle made by the slip direction relative to the grain boundary normal is less than a critical value, depending on the ratio of the GND densities and the orientation of the transmitted dislocations.  相似文献   

8.
The higher-order stress work-conjugate to slip gradient in single crystals at small strains is derived based on the self-energy of geometrically necessary dislocations (GNDs). It is shown that this higher-order stress changes stepwise as a function of in-plane slip gradient and therefore significantly influences the onset of initial yielding in polycrystals. The higher-order stress based on the self-energy of GNDs is then incorporated into the strain gradient plasticity theory of Gurtin [2002. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 50, 5-32] and applied to single-slip-oriented 2D and 3D model crystal grains of size D. It is thus found that the self-energy of GNDs gives a D-1-dependent term for the averaged resolved shear stress in such a model grain under yielding. Using published experimental data for several polycrystalline metals, it is demonstrated that the D-1-dependent term successfully explains the grain size dependence of initial yield stress and the dislocation cell size dependence of flow stress in the submicron to several-micron range of grain and cell sizes.  相似文献   

9.
In a recent publication, we derived the mesoscale continuum theory of plasticity for multiple-slip systems of parallel edge dislocations, motivated by the statistical-based nonlocal continuum crystal plasticity theory for single-glide given by Yefimov et al. [2004b. A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity simulations. J. Mech. Phys. Solids 52, 279-300]. In this dislocation field theory (DiFT) the transport equations for both the total dislocation density and geometrically necessary dislocation (GND) density on each slip system were obtained from the Peach-Koehler interactions through both single and pair dislocation correlations. The effect of pair correlation interactions manifested itself in the form of a back stress in addition to the external shear and the self-consistent internal stress. We here present the study of size effects in single crystalline thin films with symmetric double slip using the novel continuum theory. Two boundary value problems are analyzed: (1) stress relaxation in thin films on substrates subject to thermal loading, and (2) simple shear in constrained films. In these problems, earlier discrete dislocation simulations had shown that size effects are born out of layers of dislocations developing near constrained interfaces. These boundary layers depend on slip orientations and applied loading but are insensitive to the film thickness. We investigate the stress response to changes in controlled parameters in both problems. Comparisons with previous discrete dislocation simulations are discussed.  相似文献   

10.
Two new formulations of micropolar single crystal plasticity are presented within a geometrically linear setting. The construction of yield criteria and flow rules for generalized continuum theories with higher-order stresses can be done in one of two ways: (i) a single criterion can be introduced in terms of a combined equivalent stress and inelastic rate or (ii) or individual criteria can be specified for each conjugate stress/inelastic kinematic rate pair, a so-called multi-criterion theory. Both single and multi-criterion theories are developed and discussed within the context of dislocation-based constitutive models. Parallels and distinctions are made between the proposed theories and some of the alternative generalized crystal plasticity models that can be found in the literature. Parametric numerical simulations of a constrained thin film subjected to simple shear are conducted via finite element analysis using a simplified 2-D version of the fully 3-D theory to highlight the influence of specific model components on the resulting deformation under both loading and unloading conditions. The deformation behavior is quantified in terms of the average stress-strain response and the local shear strain and geometrically necessary dislocation density distributions. It is demonstrated that micropolar single crystal plasticity can qualitatively capture the same range of behaviors as slip gradient-based models, while offering a simpler numerical implementation and without introducing plastic slip rates as generalized traction-conjugate velocities subject to an additional microforce balance.  相似文献   

11.
In this study, a homogenization theory based on the Gurtin strain gradient formulation and its finite element discretization are developed for investigating the size effects on macroscopic responses of periodic materials. To derive the homogenization equations consisting of the relation of macroscopic stress, the weak form of stress balance, and the weak form of microforce balance, the Y-periodicity is used as additional, as well as standard, boundary conditions at the boundary of a unit cell. Then, by applying a tangent modulus method, a set of finite element equations is obtained from the homogenization equations. The computational stability and efficiency of this finite element discretization are verified by analyzing a model composite. Furthermore, a model polycrystal is analyzed for investigating the grain size dependence of polycrystal plasticity. In this analysis, the micro-clamped, micro-free, and defect-free conditions are considered as the additional boundary conditions at grain boundaries, and their effects are discussed.  相似文献   

12.
A set of evolution equations for dislocation density is developed incorporating the combined evolution of statistically stored and geometrically necessary densities. The statistical density evolves through Burgers vector-conserving reactions based in dislocation mechanics. The geometric density evolves due to the divergence of dislocation fluxes associated with the inhomogeneous nature of plasticity in crystals. Integration of the density-based model requires additional dislocation density/density-flux boundary conditions to complement the standard traction/displacement boundary conditions. The dislocation density evolution equations and the coupling of the dislocation density flux to the slip deformation in a continuum crystal plasticity model are incorporated into a finite element model. Simulations of an idealized crystal with a simplified slip geometry are conducted to demonstrate the length scale-dependence of the mechanical behavior of the constitutive model. The model formulation and simulation results have direct implications on the ability to explicitly model the interaction of dislocation densities with grain boundaries and on the net effect of grain boundaries on the macroscopic mechanical response of polycrystals.  相似文献   

13.
This study develops a gradient theory of small-deformation viscoplasticity based on: a system of microforces consistent with its peculiar balance; a mechanical version of the second law that includes, via the microforces, work performed during viscoplastic flow; a constitutive theory that accounts for the Burgers vector through a free energy dependent on , with Hp the plastic part of the elastic-plastic decomposition of the displacement gradient. The microforce balance and the constitutive equations, restricted by the second law, are shown to be together equivalent to a nonlocal flow rule in the form of a coupled pair of second-order partial differential equations. The first of these is an equation for the plastic strain-rate in which the stress T plays a basic role; the second, which is independent of T, is an equation for the plastic spin. A consequence of this second equation is that the plastic spin vanishes identically when the free energy is independent of, but not generally otherwise. A formal discussion based on experience with other gradient theories suggests that sufficiently far from boundaries solutions should not differ appreciably from classical solutions, but close to microscopically hard boundaries, boundary layers characterized by a large Burgers vector and large plastic spin should form.Because of the nonlocal nature of the flow rule, the classical macroscopic boundary conditions need be supplemented by nonstandard boundary conditions associated with viscoplastic flow. As an aid to solution, a variational formulation of the flow rule is derived.Finally, we sketch a generalization of the theory that allows for isotropic hardening resulting from dissipative constitutive dependences on .  相似文献   

14.
A strain gradient-dependent crystal plasticity approach is presented to model the constitutive behaviour of polycrystal FCC metals under large plastic deformation. In order to be capable of predicting scale dependence, the heterogeneous deformation-induced evolution and distribution of geometrically necessary dislocations (GNDs) are incorporated into the phenomenological continuum theory of crystal plasticity. Consequently, the resulting boundary value problem accommodates, in addition to the ordinary stress equilibrium condition, a condition which sets the additional nodal degrees of freedom, the edge and screw GND densities, proportional (in a weak sense) to the gradients of crystalline slip. Next to this direct coupling between microstructural dislocation evolutions and macroscopic gradients of plastic slip, another characteristic of the presented crystal plasticity model is the incorporation of the GND-effect, which leads to an essentially different constitutive behaviour than the statistically stored dislocation (SSD) densities. The GNDs, by their geometrical nature of locally similar signs, are expected to influence the plastic flow through a non-local back-stress measure, counteracting the resolved shear stress on the slip systems in the undeformed situation and providing a kinematic hardening contribution. Furthermore, the interactions between both SSD and GND densities are subject to the formation of slip system obstacle densities and accompanying hardening, accountable for slip resistance. As an example problem and without loss of generality, the model is applied to predict the formation of boundary layers and the accompanying size effect of a constrained strip under simple shear deformation, for symmetric double-slip conditions.  相似文献   

15.
16.
This study develops a one-dimensional theory of strain-gradient plasticity based on: (i) a system of microstresses consistent with a microforce balance; (ii) a mechanical version of the second law that includes, via microstresses, work performed during viscoplastic flow; (iii) a constitutive theory that allows
the free-energy to depend on the gradient of the plastic strain, and
the microstresses to depend on the gradient of the plastic strain-rate.
The constitutive equations, whose rate-dependence is of power-law form, are endowed with energetic and dissipative gradient length-scales L and l, respectively, and allow for a gradient-dependent generalization of standard internal-variable hardening. The microforce balance when augmented by the constitutive relations for the microstresses results in a nonlocal flow rule in the form of a partial differential equation for the plastic strain. Typical macroscopic boundary conditions are supplemented by nonstandard microscopic boundary conditions associated with flow, and properties of the resulting boundary-value problem are studied both analytically and numerically. The resulting solutions are shown to exhibit three distinct physical phenomena:
(i)
standard (isotropic) internal-variable hardening;
(ii)
energetic hardening, with concomitant back stress, associated with plastic-strain gradients and resulting in boundary layer effects;
(iii)
dissipative strengthening associated with plastic strain-rate gradients and resulting in a size-dependent increase in yield strength.
  相似文献   

17.
Bending of a strip in plane strain is analyzed using discrete dislocation plasticity where the dislocations are modeled as line defects in a linear elastic medium. At each stage of loading, superposition is used to represent the solution in terms of the infinite medium solution for the discrete dislocations and a complementary solution that enforces the boundary conditions, which is non-singular and obtained from a linear elastic, finite element solution. The lattice resistance to dislocation motion, dislocation nucleation and dislocation annihilation are incorporated into the formulation through a set of constitutive rules. Solutions for cases with multiple slip systems and with a single slip system are presented. The bending moment versus rotation relation and the evolution of the dislocation structure are outcomes of the boundary value problem solution. The effects of slip geometry, obstacles to dislocation motion and specimen size on the moment versus rotation response are considered. Also, the evolution of the dislocation structure is studied with emphasis on the role of geometrically necessary dislocations. The dislocation structure that develops leads to well-defined slip bands, with the slip band spacing scaling with the specimen height.  相似文献   

18.
Experimental studies on indentation into face-centered cubic (FCC) single crystals such as copper and aluminum were performed to reveal the spatially resolved variation in crystal lattice rotation induced due to wedge indentation. The crystal lattice curvature tensors of the indented crystals were calculated from the in-plane lattice rotation results as measured by electron backscatter diffraction (EBSD). Nye's dislocation density tensors for plane strain deformation of both crystals were determined from the lattice curvature tensors. The least L2-norm solutions to the geometrically necessary dislocation densities for the case in which three effective in-plane slip systems were activated in the single crystals associated with the indentation were determined. Results show the formation of lattice rotation discontinuities along with a very high density of geometrically necessary dislocations.  相似文献   

19.
This study develops a small-deformation theory of strain-gradient plasticity for single crystals. The theory is based on: (i) a kinematical notion of a continuous distribution of edge and screw dislocations; (ii) a system of microscopic stresses consistent with a system of microscopic force balances, one balance for each slip system; (iii) a mechanical version of the second law that includes, via the microscopic stresses, work performed during viscoplastic flow; and (iv) a constitutive theory that allows:
the free energy to depend on densities of edge and screw dislocations and hence on gradients of (plastic) slip;
the microscopic stresses to depend on slip-rate gradients.
The microscopic force balances when augmented by constitutive relations for the microscopic stresses results in a system of nonlocal flow rules in the form of second-order partial differential equations for the slips. When the free energy depends on the dislocation densities the microscopic stresses are partially energetic, and this, in turn, leads to backstresses in the flow rules; on the other hand, a dependence of these stresses on slip-rate gradients leads to a strengthening. The flow rules, being nonlocal, require microscopic boundary conditions; as an aid to numerical solutions a weak (virtual power) formulation of the flow rule is derived.  相似文献   

20.
A model is developed for thermomechanical behavior of defective, low-symmetry ceramic crystals such as αα-corundum. Kinematics resolved are nonlinear elastic deformation, thermal expansion, dislocation glide, mechanical twinning, and residual lattice strains associated with eigenstress fields of defects such as dislocations and stacking faults. Multiscale concepts are applied to describe effects of twinning on effective thermoelastic properties. Glide and twinning are thermodynamically irreversible, while free energy accumulates with geometrically necessary dislocations associated with strain and rotation gradients, statistically stored dislocations, and twin boundaries. The model is applied to describe single crystals of corundum. Hardening behaviors of glide and twin systems from the total density of dislocations accumulated during basal slip are quantified for pure and doped corundum crystals. Residual lattice expansion is predicted from nonlinear elasticity and dislocation line and stacking fault energies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号