首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
This paper is concerned with the theoretical analysis and correlation with the numerical results of the displacement time histories of the cylindrically curved laminated composite shells exposed to normal blast shock waves. The laminated composite shell is clamped at its all edges. The dynamic equation of the cylindrical shell used in this study is valid under the assumptions made in Love's theory of thin elastic shells. The constitutive equations of laminated composite shells are given in the frame of effective modulus theory. The governing equation of the cylindrical shell is solved by the Runge-Kutta method. In addition, a finite element modeling and analysis are presented and compared with the theoretical results. The peak deflections and response frequencies obtained from theoretical and numerical analyses are in agreement. The effects of material properties and geometrical properties are examined on the dynamic behaviour.  相似文献   

2.
The derivation of the general equations of motion for the analysis of laminated cylindrical shells consisting of layers of orthotropic laminae, and the equations of motion for rotationally symmetric deformation made previously by the authors are used in this study. The three coupled differential equations governing the rotationally symmetric motion of each layer of a cylindrical shell with rotary inertia neglected are replaced by another set of three differential equations where the solutions can be obtained systematically. General solutions for laminated cylindrical shells of finite length are presented. Coupled frequencies and several mode shapes for a fixed-end cylindrical shell with one and two orthotropic layers of various geometric dimensions are calculated for illustrative purposes. The results based on the present analysis for a single layered shell are compared to the results obtained according to the classical analysis.  相似文献   

3.
Large-amplitude (geometrically non-linear) vibrations of circular cylindrical shells subjected to radial harmonic excitation in the spectral neighbourhood of the lowest resonances are investigated. The Lagrange equations of motion are obtained by an energy approach, retaining damping through Rayleigh's dissipation function. Four different non-linear thin shell theories, namely Donnell's, Sanders-Koiter, Flügge-Lur’e-Byrne and Novozhilov's theories, which neglect rotary inertia and shear deformation, are used to calculate the elastic strain energy. The formulation is also valid for orthotropic and symmetric cross-ply laminated composite shells. The large-amplitude response of perfect and imperfect, simply supported circular cylindrical shells to harmonic excitation in the spectral neighbourhood of the lowest natural frequency is computed for all these shell theories. Numerical responses obtained by using these four non-linear shell theories are also compared to results obtained by using the Donnell's non-linear shallow-shell equation of motion. A validation of calculations by comparison with experimental results is also performed. Both empty and fluid-filled shells are investigated by using a potential fluid model. The effects of radial pressure and axial load are also studied. Boundary conditions for simply supported shells are exactly satisfied. Different expansions involving from 14 to 48 generalized co-ordinates, associated with natural modes of simply supported shells, are used. The non-linear equations of motion are studied by using a code based on an arclength continuation method allowing bifurcation analysis.  相似文献   

4.
This paper, is concerned with the nonlinear dynamics and stability of thin circular cylindrical shells clamped at both ends and subjected to axial fluid flow. In particular, it describes the development of a nonlinear theoretical model and presents theoretical results displaying the nonlinear behaviour of the clamped shell subjected to flowing fluid. The theoretical model employs the Donnell nonlinear shallow shell equations to describe the geometrically nonlinear structure. The clamped beam eigenfunctions are used to describe the axial variations of the shell deformation, automatically satisfying the boundary conditions and the circumferential continuity condition exactly. The fluid is assumed to be incompressible and inviscid, and the fluid–structure interaction is described by linear potential flow theory. The partial differential equation of motion is discretized using the Galerkin method and the final set of ordinary differential equations are integrated numerically using a pseudo-arclength continuation and collocation techniques and the Gear backward differentiation formula. A theoretical model for shells with simply supported ends is presented as well. Experiments are also described for (i) elastomer shells subjected to annular (external) air-flow and (ii) aluminium and plastic shells with internal water flow. The experimental results along with the theoretical ones indicate loss of stability by divergence with a subcritical nonlinear behaviour. Finally, theory and experiments are compared, showing good qualitative and reasonable quantitative agreement.  相似文献   

5.
Here, free vibrations and transient dynamic response analyses of laminated cross-ply oval cylindrical shells are carried out. The formulation is based on higher order theory that accounts for the transverse shear and the transverse normal deformations, and includes zig-zag variation in the in-plane displacements across the thickness of the multi-layered shells. The contributions of inertia effect due to in-plane and rotary motions, and the higher order function arising from the assumed displacement models are included. The governing equations obtained using Lagrangian equations of motion are solved through finite element approach. A detailed parametric study is conducted to bring out the influence of different shell geometry, ovality parameter, lay-up and loading environment on the vibration characteristics related to different modes of vibrations of oval shell.  相似文献   

6.
Following Flügge's exact derivation for the buckling of cylindrical shells, the equations of motion for transient dynamic loading of orthotropic circular cylindrical shells under external hydrostatic pressure have been formulated. The normal mode theory is used to provide transient dynamic response for the equations of motion. The effect of shell's parameters, external hydrostatic pressure and material properties on the shell response has been studied in detail. A part of tables and figures are given in this paper.  相似文献   

7.
The parametric instability behaviour of curved panels with cutouts subjected to in-plane static and periodic compressive edge loadings are studied using finite element analysis. The first order shear deformation theory is used to model the curved panels, considering the effects of transverse shear deformation and rotary inertia. The theory used is the extension of dynamic, shear deformable theory according to Sanders' first approximation for doubly curved shells, which can be reduced to Love's and Donnell's theories by means of tracers. The effects of static and dynamic load factors, geometry, boundary conditions and the cutout parameters on the principal instability regions of curved panels with cutouts are studied in detail using Bolotin's method. Quantitative results are presented to show the effects of shell geometry and load parameters on the stability boundaries. Results for plates are also presented as special cases and are compared with those available in the literature.  相似文献   

8.
A heretofore unavailable double Fourier series based approach, for obtaining non-separable solution to a system of completely coupled linear r th order partial differential equations with constant coefficients and subjected to general (completely coupled) boundary conditions, has been presented. The method has been successfully implemented to solve a class of hitherto unsolved boundary-value problems, pertaining to free and forced vibrations of arbitrarily laminated anisotropic doubly curved thin panels of rectangular planform, with arbitrarily prescribed (both symmetric and asymmetric with respect to the panel centerlines) admissible boundary conditions and subjected to general transverse loading.Existing solutions such as those due to Navier or Levy are based on the well-known method of separation of variables. Such solutions represent particular solutions whenever the method of separation of variables work, and when these particular solution functions fortuitously satisfy the boundary conditions. For derivation of the complementary solution, the complementary boundary constraints are introduced through boundary discontinuities of some of the particular solution functions and their partial derivatives. Such discontinuities form sets of measure zero.Various cases of lamination, geometry and dynamic response (forced and free vibrations) of a class of thin anisotropic laminated shells (curved panels) have been shown to follow from the above. Six sets of boundary conditions are used to illustrate the present method for the derivation of complementary solutions. Navier-type solutions whenever available form special cases of the present general solution.  相似文献   

9.
The flow-induced vibration characteristics of anisotropic laminated cylindrical shells partially or completely filled with liquid or subjected to a flowing fluid are studied in this work for two cases of circumferential wave number, the axisymmetric, where n=0 and the beam-like, where n=1. The shear deformation effects are taken into account in this theory; therefore, the equations of motion are determined with displacements and transverse shear as independent variables. The present method is a combination of finite element analysis and refined shell theory in which the displacement functions are derived from the exact solution of refined shell equations based on orthogonal curvilinear co-ordinates. Mass and stiffness matrices are determined by precise analytical integration. A finite element is defined for the liquid in cases of potential flow that yields three forces (inertial, centrifugal and Coriolis) of moving fluid. The mass, stiffness and damping matrices due to the fluid effect are obtained by an analytical integration of the fluid pressure over the liquid element. The available solution based on Sanders' theory can also be obtained from the present theory in the limiting case of infinite stiffness in transverse shear. The natural frequencies of isotropic and anisotropic cylindrical shells that are empty, partially or completely filled with liquid as well as subjected to a flowing fluid, are given. When these results are compared with corresponding results obtained using existing theories, very good agreement is obtained.  相似文献   

10.
A theoretical method is developed to investigate the effects of ring stiffeners on vibration characteristics and transient responses for the ring-stiffened composite cylindrical shells subjected to the step pulse loading. Love's thin shell theory combined with the discrete stiffener theory to consider the ring stiffening effect is adopted to formulate the theoretical model. The ring stiffeners are laminated with a composite material and have a uniform rectangular cross-section. The Rayleigh-Ritz procedure is applied to obtain the frequency equation. The modal analysis technique is used to develop the analytical solutions of the transient response. The analysis is based on an expansion of the loads, displacements in the double Fourier series that satisfy the boundary conditions. The effect of stiffener's eccentricity, number, size, and position on transient response of the shells is examined. The theoretical results are verified by comparison with FEM results.  相似文献   

11.
Integrated mechanics and a finite element method are presented for predicting the damping of doubly curved laminates and laminated shell composite structures. Damping mechanics are formulated in curvilinear co-ordinates from ply to structural level and the structural modal loss factors are calculated using the energy dissipation method. The modelling of damping at the laminate level is based on first order shear shell theory. An eight-node shell damping finite element is developed. Comparisons of the present model with classical and discrete layer laminate damping theory predictions are shown. Modal damping and natural frequencies of composite plates and open cylindrical shells were measured and correlated with predicted results. Parametric studies illustrate the effect of curvature and lamination on modal damping and natural frequency.  相似文献   

12.
The free vibration problem of thin elastic cross-ply laminated circular cylindrical panels is considered. For this problem, a theoretical unification as well as a numerical comparison of the thin shell theories most commonly used (in engineering applications) is presented. In more detail, the problem is formulated in such a way that by using some tracers, which have the form of Kronecker's deltas, the stress-strain relations, constitutive equations and equations of motion obtained produce, as special cases, the corresponding relations and equations of Donnell's, Love's, Sanders' and Flugge's theories. By using a closed form solution, obtained for simply supported panels, a comparison of corresponding numerical results obtained on the basis of all of the aforementioned shell theories is attempted.  相似文献   

13.
In the free vibration analysis of clamped non-circular cylindrical shell panels, a matrix method has been used to solve the governing differential equations, which have variable coefficients. The effect of the curvature, thickness ratio and aspect ratio on the natural frequencies has been studied. The results obtained for circular cylindrical panels are compared with other available results. The convergence of the solution is found to be good.  相似文献   

14.
This paper presents the free vibrational characteristics of isotropic coupled conical-cylindrical shells. The equations of motion for the cylindrical and conical shells are solved using two different methods. A wave solution is used to describe the displacements of the cylindrical shell, while the displacements of the conical sections are solved using a power series solution. Both Donnell-Mushtari and Flügge equations of motion are used and the limitations associated with each thin shell theory are discussed. Natural frequencies are presented for different boundary conditions. The effect of the boundary conditions and the influence of the semi-vertex cone angle are described. The results from the theoretical model presented here are compared with those obtained by previous researchers and from a finite element model.  相似文献   

15.
The natural frequencies of cylindrically curved panels are available in closed form for only two boundary condition sets. This paper demonstrates how Sewall's shallow shell formation can be recast in a relatively simple form to allow direct computation of the natural frequencies and mode shapes of cylindrical panels with a wide range of boundary conditions.  相似文献   

16.
This paper investigates free vibration and dynamic instability of functionally graded cylindrical panels subjected to combined static and periodic axial forces and in thermal environment. Theoretical formulations are based on Reddy's higher order shear deformation shell theory to account for rotary inertia and the parabolic distribution of the transverse shear strains through the panel thickness. Thermal effects due to steady temperature change are included in the analysis. Material properties are assumed to be temperature dependent and graded in the thickness direction according to a power-law distribution in terms of the volume fractions of the constituents. The panel under current consideration is clamped or simply supported on two straight edges and may be either free, simply supported or clamped on the curved edges. A semi-analytical approach, which takes the advantages of one-dimensional differential quadrature approximation, Galerkin technique and Bolotin's method, is employed to determine the natural frequencies and the unstable regions of the panel. Numerical results for silicon nitride/stainless-steel cylindrical panels are given in both dimensionless tabular and graphical forms. Effects of material composition, temperature rise, panel geometry parameters, and boundary conditions on free vibration and the parametric resonance are also studied.  相似文献   

17.
This paper presents a theoretical analysis of a dynamic boundary value problem of the axially-symmetric motion of isotropic, homogeneous, linearly-viscoelastic, thick, cylindrical shells subjected to time-dependent surface tractions and/or time-dependent boundary conditions. Williams' modal-acceleration method has been used to treat the time-dependent boundary conditions. Two forms of the correspondence principle are used to obtain the governing differential equations and the quasi-static solutions. A numerical example is given to study the transient response of a cylindrically hollow rod subject to longitudinal impacts.  相似文献   

18.
In this paper, based on the theory of elastic wave motion for open cylindrical shell, wave scattering and dynamic stress concentrations in open cylindrical shells with a hole are studied by making use of small parameter perturbation methods and boundary-integral equation techniques. The boundary-integral equations and iterative imminent series of scattered waves around the cavity of the cylindrical shell are derived. By employing this method, the approximately analytical solutions of scattered waves on the edge of cutout are gained. The computational formula for getting the dynamic stress concentration factors on the contour of cavity is developed. As an example, the numerical results of these dynamic stress concentration factors are graphically presented and discussed. The analytical methods put forward in the present work have practical significances for solving the problem of elastic wave scattering and dynamic stress concentrations in cylindrical shells with a circular cutout.  相似文献   

19.
A hitherto unavailable analytical solution to the boundary-value problem of the free vibration response of shear-flexible antisymmetric cross-ply laminated cylindrical panels is presented. The laminated shell theory formulation is based on the first order shear deformation theory (FSDT) including rotatory and surface-parallel inertias. The governing equations of the panel are defined by five highly coupled partial differential equations in five unknowns—three displacements, and two rotations. The assumed solution functions for the eigen/boundary-value problem are selected in terms of mixed-type double Fourier series. Numerical results presented for parametric effects, such as length-to-thickness ratio and radius-to-thickness ratio, should serve as a bench mark for future comparison. A four-node shear-flexible finite element is selected to compare the results with the present solution.  相似文献   

20.
The nonlinear vibrations of a thin, elastic, laminated composite circular cylindrical shell, moving in axial direction and having an internal resonance, are investigated in this study. Nonlinearities due to large-amplitude shell motion are considered by using Donnell’s nonlinear shallow-shell theory, with consideration of the effect of viscous structure damping. Differently from conventional Donnell’s nonlinear shallow-shell equations, an improved nonlinear model without employing Airy stress function is developed to study the nonlinear dynamics of thin shells. The system is discretized by Galerkin’s method while a model involving four degrees of freedom, allowing for the traveling wave response of the shell, is adopted. The method of harmonic balance is applied to study the nonlinear dynamic responses of the multi-degrees-of-freedom system. When the structure is excited close to a resonant frequency, very intricate frequency–response curves are obtained, which show strong modal interactions and one-to-one-to-one-to-one internal resonance phenomenon. The effects of different parameters on the complex dynamic response are investigated in this study. The stability of steady-state solutions is also analyzed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号