首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We study the Robin problem for the scalar Oseen equation in an open n‐dimensional set with compact Ljapunov boundary. We prescribe two types of Robin boundary conditions, and prove the unique solvability of these problems as well as a representation formula for the solution in form of a scalar Oseen single layer potential. Moreover, we prove the maximum principle for the solution to the Robin problem of the scalar Oseen equation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
This paper solves the scalar Oseen equation, a linearized form of the Navier-Stokes equation. Because the fundamental solution has anisotropic properties, the problem is set in a Sobolev space with isotropic and anisotropic weights. We establish some existence results and regularities in L p theory.  相似文献   

3.
In this paper, we study the existence and regularity of solutions to the Stokes and Oseen equations with nonhomogeneous Dirichlet boundary conditions with low regularity. We consider boundary conditions for which the normal component is not equal to zero. We rewrite the Stokes and the Oseen equations in the form of a system of two equations. The first one is an evolution equation satisfied by Pu, the projection of the solution on the Stokes space – the space of divergence free vector fields with a normal trace equal to zero – and the second one is a quasi-stationary elliptic equation satisfied by (IP)u, the projection of the solution on the orthogonal complement of the Stokes space. We establish optimal regularity results for Pu and (IP)u. We also study the existence of weak solutions to the three-dimensional instationary Navier–Stokes equations for more regular data, but without any smallness assumption on the initial and boundary conditions.  相似文献   

4.
We propose two new boundary integral equation formulas for the biharmonic equation with the Dirichlet boundary data that arises from plate bending problems in ℝ2. Two boundary conditions, u and ∂u/∂n, usually yield a 2 × 2 non-symmetric matrix system of integral equations. Our new formulas yield scalar integral equations that can be handled more efficiently for theoretical and numerical purposes. In this paper we supply complete ellipticity and solvability analyses of our new formulas. Numerical experiments for simple Galerkin methods are also provided. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Consider the Dirichlet problem −vΔu+k∂ 1 u = f withv, k>0 in ℝ3 or in an exterior domain of ℝ3 where the skew-symmetric differential operator −1=∂/∂x1 is a singular perturbation of the Laplacian. Because of the inhomogeneity of the fundamental solution we study existence, uniqueness and regularity in Sobolev spaces with anisotropic weights. In these spaces the operator ∂1 yields an additional positive definite term giving better results than in Sobolev spaces with radial weights. The elliptic equation −vΔu +k1 u=f can be taken as a model problem for the Oseen equations, a linearized form of the Navier-Stokes equations. Supported by the Sonderforschungsbereich 256 of the Deutsche Forschungsgemeinschaft at the University of Bonn  相似文献   

6.
In this paper the rigorous justification of the formal asymptotic expansions constructed by the method of matched inner and outer expansions is established for the three-dimensional steady flow of a viscous, incompressible fluid past an arbitrary obstacle. The justification is based on the series representation of the solution to the Navier-Stokes equations due to Finn, and it involves the reductions of various exterior boundary value problems for the Stokes and Oseen equations to boundary integral equations of the first kind from which existence as well as asymptotic error estimates for the solutions are deduced. In particular, it is shown that the force exerted on the obstacle by the fluid admits the asymptotic representation F = A0 + A1Re + O(Re2 ln Re−1) as the Reynolds number Re → 0+, where the vectors A0 and A1 can be obtained from the method of matched inner and outer expansions.  相似文献   

7.
We analyze an adaptive finite element/boundary element procedure for scalar elastoplastic interface problems involving friction, where a nonlinear uniformly monotone operator such as the p-Laplacian is coupled to the linear Laplace equation on the exterior domain. The problem is reduced to a boundary/domain variational inequality, a discretized saddle point formulation of which is then solved using the Uzawa algorithm and adaptive mesh refinements based on a gradient recovery scheme. The Galerkin approximations are shown to converge to the unique solution of the variational problem in a suitable product of L p - and L 2-Sobolev spaces.  相似文献   

8.
Both exterior and interior mixed Dirichlet-Neumann problems in R3 for the scalar Helmholtz equation are solved via boundary integral equations. The integral equations are equivalent to the original problem in the sense that the traces of the weak seolution satisfy the integral equations, and, conversely, the solution of the integral equations inserted into Green's formula yields the solution of the mixed boundary value problem. The calculus of pseudodifferential operators is used to prove existence and regularity of the solution of the integral equations. The regularity results — obtained via Wiener-Hopf technique — show the explicit “edge” behavior of the solution near the submanifold which separates the Dirichlet boundary from the Neumann boundary.  相似文献   

9.
Summary This paper considers the optimal quadratic cost problem (regulator problem) for a class of abstract differential equations with unbounded operators which, under the same unified framework, model in particular «concrete» boundary control problems for partial differential equations defined on a bounded open domain of any dimension, including: second order hyperbolic scalar equations with control in the Dirichlet or in the Neumann boundary conditions; first order hyperbolic systems with boundary control; and Euler-Bernoulli (plate) equations with (for instance) control(s) in the Dirichlet and/or Neumann boundary conditions. The observation operator in the quadratic cost functional is assumed to be non-smoothing (in particular, it may be the identity operator), a case which introduces technical difficulties due to the low regularity of the solutions. The paper studies existence and uniqueness of the resulting algebraic (operator) Riccati equation, as well as the relationship between exact controllability and the property that the Riccati operator be an isomorphism, a distinctive feature of the dynamics in question (emphatically not true for, say, parabolic boundary control problems). This isomorphism allows one to introduce a «dual» Riccati equation, corresponding to a «dual» optimal control problem. Properties between the original and the «dual» problem are also investigated.Research partially supported by the National Science Foundation under Grant NSF-DMS-8301668 and by the Air Force Office of Scientific Research under Grant AFOSR-84-0365.  相似文献   

10.
Here we consider initial boundary value problems for the heat equation by using the heat potential representation for the solution. Depending on the choice of the representation we are led to a solution of the various boundary integral equations. We discuss the solvability of these equations in anisotropic Sobolev spaces. It turns out that the double-layer heat potential D and its spatial adjoint D′ have smoothing properties similar to the single-layer heat operator. This yields compactness of the operators D and D′. In addition, for any constant c ≠ 0, cI + D′ and cI + D′ are isomorphisms. Based on the coercivity of the single-layer heat operator and the above compactness we establish the coerciveness of the hypersingular heat operator. Moreover, we show an equivalence between the weak solution and the various boundary integral solutions. As a further application we describe a coupling procedure for an exterior initial boundary value problem for the non-homogeneous heat equation.  相似文献   

11.
We present a new formulation for the problem of electromagnetic scattering from perfect electric conductors. While our representation for the electric and magnetic fields is based on the standard vector and scalar potentials A ,φ in the Lorenz gauge, we establish boundary conditions on the potentials themselves rather than on the field quantities. This permits the development of a well‐conditioned second‐kind Fredholm integral equation that has no spurious resonances, avoids low‐frequency breakdown, and is insensitive to the genus of the scatterer. The equations for the vector and scalar potentials are decoupled. That is, the unknown scalar potential defining the scattered field, φscat, is determined entirely by the incident scalar potential φinc. Likewise, the unknown vector potential defining the scattered field, A scat is determined entirely by the incident vector potential Ainc. This decoupled formulation is valid not only in the static limit but for arbitrary ω ≥ 0$. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
This paper describes existence, uniqueness and special eigenfunction representations of H1‐solutions of second order, self‐adjoint, elliptic equations with both interior and boundary source terms. The equations are posed on bounded regions with Dirichlet conditions on part of the boundary and Neumann conditions on the complement. The system is decomposed into separate problems defined on orthogonal subspaces of H1(Ω). One problem involves the equation with the interior source term and the Neumann data. The other problem just involves the homogeneous equation with Dirichlet data. Spectral representations of the solution operators for each of these problems are found. The solutions are described using bases that are, respectively, eigenfunctions of the differential operator with mixed null boundary conditions, and certain mixed Steklov eigenfunctions. These series converge strongly in H1(Ω). Necessary and sufficient conditions for the Dirichlet part of the boundary data to have a finite energy extension are described. The solutions for a problem that models a cylindrical capacitor is found explicitly. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
This work deals with the existence of optimal solution and the maximum principle for the optimal control problem governed by time-periodic Stokes–Oseen equations with boundary control. An example of a laminar flow is given, and the general unique continuation hypothesis for the Stokes–Oseen operator is checked in this case.  相似文献   

14.
We study time-periodic Oseen flows past a rotating body in ℝ3 proving weighted a priori estimates in Lq-spaces using Muckenhoupt weights. After a time-dependent change of coordinates the problem is reduced to a stationary Oseen equation with the additional terms (ω ∧ x) ⋅ ∇ u and −ω ∧ u in the equation of momentum where ω denotes the angular velocity. Due to the asymmetry of Oseen flow and to describe its wake we use anisotropic Muckenhoupt weights, a weighted theory of Littlewood–Paley decomposition and of maximal operators as well as one-sided univariate weights, one-sided maximal operators and a new version of Jones' factorization theorem. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
We study the Dirichlet problem for the stationary Oseen equations around a rotating body in an exterior domain. Our main results are the existence and uniqueness of weak and very weak solutions satisfying appropriate Lq‐estimates. The uniqueness of very weak solutions is shown by the method of cut‐off functions with an anisotropic decay. Then our existence result for very weak solutions is deduced by a duality argument from the existence and estimates of strong solutions. From this and interior regularity of very weak solutions, we finally establish the complete D1,r‐result for weak solutions of the Oseen equations around a rotating body in an exterior domain, where 4/3<r <4. Here, D1,r is the homogeneous Sobolev space.  相似文献   

16.
The purpose of this work is to show the well‐posedness in L2‐Sobolev spaces of the Poisson‐transmission problem for the Oseen and Brinkman systems on complementary Lipschitz domains in a compact Riemannian manifold. The Oseen system appears as a perturbation of order one of the Stokes system, given in terms of the Levi‐Civita connection, while the Brinkman system is a zero order perturbation of the Stokes system. The technical details of this paper rely on the layer potential theory for the Stokes system and the invertibility of some perturbed zero index Fredholm operators by a first order differential operator given in terms of the Levi‐Civita connection. The compactness of this differential operator requires to restrict ourselves to low dimensional compact Riemannian manifolds.  相似文献   

17.
In this article, we study a Galerkin method for a nonstationary operator equation with a leading self-adjoint operator A(t) and a subordinate nonlinear operator F. The existence of the strong solutions of the Cauchy problem for differential and approximate equations are proved. New error estimates for the approximate solutions and their derivatives are obtained. The developed method is applied to an initial boundary value problem for a partial differential equation of parabolic type.  相似文献   

18.
In this paper the regularity properties of second-order hyperbolic equations defined over a rectangular domain Θ with boundary Γ under the action of a Neumann boundary forcing term inL 2 (0,T;H 1/4 (Γ)) are investigated. With this given boundary input, we prove by a cosine operator/functional analytical approach that not only is the solution of the wave equation and its derivatives continuous in time, with their pointwise values in a basic energy space (in the interior of Ω), but also that a trace regularity thereof can be assigned for the solution’s time derivative in an appropriate (negative) Sobolev space. This new-found information on the solution and its traces is crucial in handling a mathematical model derived for a particular fluid/structure interaction system.  相似文献   

19.
We derive scalar boundary integral equation formulas for both interior and exterior biharmonic equations with the Dirichlet boundary data. They are based on indirect boundary integral equation formulas, so-called the Chakrabarty and Almansi formulas. The scalar formulas are derived through an unconventional variational approach. The unique solvability results of the formulas are also obtained.  相似文献   

20.
We consider the problem of numerical simulation of the scattering of acoustic and electromagnetic waves on a cube whose edge ha s length up to 8 wave lengths of the incident wave. We describe a scheme using a representation of the boundary integral equation in the form of an operator convolution equation on the symmetry group of the cube. We compare the results of numerical solution of integral equations of first and second kind for scalar and vector problems of diffraction of a plane wave on a cube. Translated fromProblemy Matematicheskoi Fiziki, 1998, pp. 36–45.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号