首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Abstract

We investigate the general problem of estimating the translation of a stochastic process governed by a stochastic differential equation driven by a fractional Brownian motion. The special case of the Ornstein-Uhlenbeck process is discussed in particular.  相似文献   

2.
Abstract

We prove an existence and uniqueness theorem for solutions of multidimensional, time dependent, stochastic differential equations driven simultaneously by a multidimensional fractional Brownian motion with Hurst parameter H > 1/2 and a multidimensional standard Brownian motion. The proof relies on some a priori estimates, which are obtained using the methods of fractional integration and the classical Itô stochastic calculus. The existence result is based on the Yamada–Watanabe theorem.  相似文献   

3.
《随机分析与应用》2013,31(6):1577-1607
Abstract

Linear and semilinear stochastic evolution equations with additive noise, where the forcing term is an infinite dimensional fractional Brownian motion are studied. Under usual dissipativity conditions the equations are shown to define random dynamical systems which have unique, exponentially attracting fixed points. The results are applied to stochastic parabolic PDE's. They are also applicable to standard finite-dimensional dissipative stochastic equation driven by fractional Brownian motion.  相似文献   

4.
《随机分析与应用》2013,31(2):507-523
Abstract

The integration and differentiation of fractional orders are well known concepts for deterministic functions (see Miller, K.S.; Ross, B. An Introduction to Fractional Calculus and Fractional Differential Equations; John Wiley: New York, 1993; I. Podlubny and Ahmed M.A. El-Sayed, On two definitions of fractional calculus Slovak Academy of Sciences Institute of experimental Phys. UEF-03-96 ISBN 80-7099-252-2, 1996; Podlubny, I. Fractional Differential Equations; Acad. Press: San Diego – New York, London etc. 1999; Samko, S.G.; Kilbas, A.A.; Marichev, O. Integral and derivatives of the fractional orders and some of their applications. Nauka i Teknika Minisk 1983). In earlier work, we have studied the fractional calculus for mean square continuous stochastic processes. In this work, we shall study the mean square (m.s.) fractional calculus for stochastic processes which are m.s. Riemann-integrable and prove some its properties.  相似文献   

5.
Abstract

This paper studies the numerical solution of fractional stochastic delay differential equations driven by Brownian motion. The proposed algorithm is based on linear B-spline interpolation. The convergence and the numerical performance of the method are analyzed. The technique is adopted for determining the statistical indicators of stochastic responses of fractional Langevin and Mackey-Glass models with stochastic excitations.  相似文献   

6.
Abstract

In this paper we study stochastic evolution equations driven by a fractional white noise with arbitrary Hurst parameter in infinite dimension. We establish the existence and uniqueness of a mild solution for a nonlinear equation with multiplicative noise under Lipschitz condition by using a fixed point argument in an appropriate inductive limit space. In the linear case with additive noise, a strong solution is obtained. Those results are applied to stochastic parabolic partial differential equations perturbed by a fractional white noise.  相似文献   

7.
《随机分析与应用》2013,31(5):1209-1233
Abstract

In the paper we compute the explicit form of the fractional chaos decomposition of the solution of a fractional stochastic bilinear equation with the drift in the fractional chaos of order one and initial condition in a finite fractional chaos. The large deviations principle is also obtained for the one-dimensional distributions of the solution of the equation perturbed by a small noise.  相似文献   

8.
《随机分析与应用》2013,31(6):1487-1509
Abstract

We apply Grenander's method of sieves to the problem of identification or estimation of the “drift” function for linear stochastic systems driven by a fractional Brownian motion (fBm). We use an increasing sequence of finite dimensional subspaces of the parameter space as the natural sieves on which we maximise the likelihood function.  相似文献   

9.
Abstract

We introduce two types of Stratonovich stochastic integrals for two-parameter process. The relationship of Stratonovich integrals to Skorohod integrals will be investigated. By using this relationship, we prove that a differentiation formula for fractional Brownian sheet in Stratonovich form can be expressed as the sum of Stratonovich integrals of two types introduced in this article.  相似文献   

10.
11.
Objectives: In the paper, two new reliable analytical methods have been devised for getting new exact analytical solutions of wick-type stochastic time-fractional Benjamin-Bona-Mahony (BBM) equation. Moreover, the Hermite transform and inverse Hermite transform have been utilized for converting fractional stochastic differential equation to deterministic fractional partial differential equation and vice versa respectively. Here for reducing fractional partial differential equations (FPDE) to the ordinary differential equation (ODE), fractional complex transform has been utilized.

Methods: The authors have used a newly proposed method and Kudryshov method for getting the solutions for wick-type stochastic time-fractional Benjamin-Bona-Mahony (BBM) equation.

Results: By using two reliable methods, here, the authors find the new exact solutions for the governing equations.

Conclusion: Two new approaches to find solutions of the aforementioned equation have been established. Also, the new exact solutions have been obtained for stochastic differential equation by using two methods.  相似文献   


12.
Abstract

We determine the weighted local time for the multidimensional fractional Brownian motion from the occupation time formula. We also discuss on the Itô and Tanaka formula for the multidimensional fractional Brownian motion. In these formulas the Skorohod integral is applicable if the Hurst parameter of fractional Brownian motion is greater than 1/2. If the Hurst parameter is less than 1/2, then we use the Skorohod type integral introduced by Nualart and Zakai for the stochastic integral and establish the Itô and Tanaka formulas.  相似文献   

13.
In this article we develop an existence and uniqueness theory of variational solutions for a class of nonautonomous stochastic partial differential equations of parabolic type defined on a bounded open subset DRd and driven by an infinite-dimensional multiplicative fractional noise. We introduce two notions of such solutions for them and prove their existence and their indistinguishability by assuming that the noise is derived from an L2(D)-valued fractional Wiener process WH with Hurst parameter , whose covariance operator satisfies appropriate integrability conditions, and where γ∈(0,1] denotes the Hölder exponent of the derivative of the nonlinearity in the stochastic term of the equations. We also prove the uniqueness of solutions when the stochastic term is an affine function of the unknown random field. Our existence and uniqueness proofs rest upon the construction and the convergence of a suitable sequence of Faedo-Galerkin approximations, while our proof of indistinguishability is based on certain density arguments as well as on new continuity properties of the stochastic integral we define with respect to WH.  相似文献   

14.
15.
Abstract

We study the spectral properties of spatial and spatiotemporal Gaussian random fields defined as the solutions to stochastic elliptic, parabolic, and hyperbolic fractional pseudodifferential equations on compact fractal domains. The fractal dimension of the domain modifies the asymptotic properties of the eigenvalues that define the pure point spectra of the covariance functions of the solutions and their Karhunen-Loève-type expansions. The eigenfunction systems involved constitute orthogonal bases of the corresponding trace spaces on fractal sets. The Hölder exponent of the sample paths of the random fields is computed in terms of the fractional order of mean-quadratic variation on their increments. Such an exponent also depends on the Hausdorff dimension of the domain.  相似文献   

16.
We study a class of stochastic fractional partial differential equations of order α>1α>1 driven by a (pure jump) Lévy space–time white noise and a fractional noise. We prove the existence and uniqueness of the global mild solution by the fixed point principle under some suitable assumptions.  相似文献   

17.
We investigate the process of eigenvalues of a fractional Wishart process defined by N=B?B, where B is the matrix fractional Brownian motion recently studied in [18]. Using stochastic calculus with respect to the Young integral we show that, with probability one, the eigenvalues do not collide at any time. When the matrix process B has entries given by independent fractional Brownian motions with Hurst parameter H(1/2,1), we derive a stochastic differential equation in the Malliavin calculus sense for the eigenvalues of the corresponding fractional Wishart process. Finally, a functional limit theorem for the empirical measure-valued process of eigenvalues of a fractional Wishart process is obtained. The limit is characterized and referred to as the non-commutative fractional Wishart process, which constitutes the family of fractional dilations of the free Poisson distribution.  相似文献   

18.
In this article, we derive the exact rate of convergence of some approximation schemes associated to scalar stochastic differential equations driven by a fractional Brownian motion with Hurst index H. We consider two cases. If H>1/2, the exact rate of convergence of the Euler scheme is determined. We show that the error of the Euler scheme converges almost surely to a random variable, which in particular depends on the Malliavin derivative of the solution. This result extends those contained in J. Complex. 22(4), 459–474, 2006 and C.R. Acad. Sci. Paris, Ser. I 340(8), 611–614, 2005. When 1/6<H<1/2, the exact rate of convergence of the Crank-Nicholson scheme is determined for a particular equation. Here we show convergence in law of the error to a random variable, which depends on the solution of the equation and an independent Gaussian random variable.  相似文献   

19.
The principal resonance responses of nonlinear single-degree-of-freedom (SDOF) systems with lightly fractional derivative damping of order α (0 < α < 1) subject to the narrow-band random parametric excitation are investigated. The method of multiple scales is developed to derive two first order stochastic differential equation of amplitude and phase, and then to examine the influences of fractional order and intensity of random excitation on the first-order and second-order moment. As an example, the stochastic Duffing oscillator with fractional derivative damping is considered. The effects of detuning frequency parameter, the intensity of random excitation and the fractional order derivative damping on stability are studied through the largest Lyapunov exponent. The corresponding theoretical results are well verified through direct numerical simulations. In addition, the phenomenon of stochastic jump is analyzed for parametric principal resonance responses via finite differential method. The stochastic jump phenomena indicates that the most probable motion is around the larger non-trivial branch of the amplitude response when the intensity of excitation is very small, and the probable motion of amplitude responses will move from the larger non-trivial branch to trivial branch with the increasing of the intensity of excitation. Such stochastic jump can be considered as bifurcation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号