首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Benzo-21-crown-7(B21 C7) is one of the most important crown ethers,which not only shows excellent physicochemical properties but also exhibits promising binding capability with dialkylammonium salts.In this paper,we designed and synthesized a fixed-tetraphenylethylene(FTPE) motif bridged ditopic benzo-21-crown-7 molecule(H).The fixed tetraphenylethylene motif endows H with aggregation induced emission(AIE) prope rty.In the presence of a ditopic dialkylammonium salt guest molecule(G),a fluorescent supramolecular polymer with golden luminescent property could be fabricated.This B21 C7-based host-guest supramolecular polymer with golden fluorescence may have potential application in dynamic luminescent materials.  相似文献   

2.
《中国化学快报》2021,32(12):3882-3885
The development of solid-state smart materials, in particular those showing photoresponsive luminescence, is highly desirable for their cutting edge applications in displays, sensors, data-storage, and anti-counterfeiting. However, to achieve both excellent photoresponsive performance and bright luminescence in solid state remains challenge. Herein, we integrate a novel photochromic fluorophore YL into flexible polymer chains, thereby enabling the resultant polymer PYL with reversible photoisomerization upon aggregation. Remarkably, the polymer PYL possesses excellent photochromic properties and aggregation-induced emission (AIE) activity, which can be attributed to the photoactive YL moiety. Upon light exposure, its film exhibits reversibly off-to-on fluorescent modulation with quick response, high emission efficiency and signal contrast, sharply different from the weak emission in solution. The novel photoresponsive AIE polymer with invisible/visible color and fluorescence transformation allows for advanced anti-counterfeiting applications. This work provides an efficient platform for constructing solid-state photocontrollable luminescent materials.  相似文献   

3.
Despite the huge progress of luminescent molecular assemblies over the past decade, it is still challenging to understand their confined behavior in semi-crystalline polymers for constrained space recognition. Here, we report a polymorphic luminogen with aggregation-induced emission (AIE), capable of selective growth in polymer amorphous and crystalline phases with distinct color. The polymorphic behaviors of the AIE luminogen embedded within the polymer network are dependent on the size of nano-confinement: a thermodynamically stable polymorph of the AIE luminogen with green emission is stabilized in the amorphous phase, while a metastable polymorph with yellow emission is confined in the crystalline phase. The information on polymer crystalline and amorphous phases is transformed into distinct fluorescence colors, allowing a single AIE luminogen as a fluorescent marker for visualization of polymer microstructures in terms of amorphous and crystalline phase distribution, quantitative polymer crystallinity measurement, and spatial morphological arrangement. Our findings demonstrate that confinement of the AIE luminogen in the polymer network can achieve free space recognition and also provide a correlation between microscopic morphologies and macroscopic optical signals. We envision that our strategy will inspire the development of other materials with spatial confinement to incorporate AIE luminogens for various applications.

A polymorphic AIEgen is capable of selective growth in amorphous and crystalline polymer phases with distinct color for microstructure visualization.  相似文献   

4.
Aggregation-induced emission (AIE)-active nanoparticles (NPs) exhibiting multicolor fluorescence and high-quantum yields independent of the environment are important for the further development of next-generation smart fluorescent materials. In this work, AIE-active amphiphilic block copolymers were designed and synthesized by RAFT polymerization of a brominated tetraphenylethene (TPE)-containing acrylate (A-TPE-Br). The block copolymer exhibited typical AIE effects in selective solvents, which can be explained by hydrophobic TPE aggregated in the core during micelle formation. Luminescent core–shell NPs with a crosslinked AIE core (fixed structure) were synthesized by the Suzuki coupling reaction of the bromine groups of the assembled block copolymer and boronic acid compounds. The NPs composed of TPE/thiophene crosslinked core showed green emission in both diluted state and solid state, implying the ability to fluoresce regardless of environmental changes and molecular dispersion. Multicolor luminescent NPs capable of changing color from blue to red were synthesized by changing the coupling compounds, such as anthracene for electron-rich units and benzothiadiazole for electron-deficient units. The effects of the nature of the donor and acceptor, as well as their combination (TPE/donor/acceptor sequence), on the color and fluorescent intensity of the core crosslinked NPs in the nonpolar and polar solvents, and solid state, were investigated.  相似文献   

5.
Aggregation‐induced emission (AIE) is an attractive phenomenon in which materials display strong luminescence in the aggregated solid states rather than in the conventional dissolved molecular states. However, highly luminescent inks based on AIE are hard to be obtained because of the difficulty in finely controlling the crystallinity of AIE materials at nanoscale. Herein, we report the preparation of highly luminescent inks via oil‐in‐water microemulsion induced aggregation of Cu–I hybrid clusters based on the highly soluble copper iodide‐tris(3‐methylphenyl)phosphine (Cu4I4(P‐(m‐Tol)3)4) hybrid. Furthermore, we can synthesize a series of AIE inks with different light‐emission colors to cover the whole visible spectrum range via a facile ligand exchange processes. The assemblies of Cu–I hybrid clusters with AIE characteristics will pave the way to fabricate low‐cost highly luminescent inks.  相似文献   

6.
Organic room temperature luminescent materials present a unique phosphorescence emission with a long lifetime. However, many of these materials only emit single blue or green color in spite of external stimulation, and their color tunability is limited. Herein, we report a rational design to extend the emission color range from blue to red by controlling the doping of simple pyrene derivatives into a robust polymer matrix. The integration of these pyrene molecules into the polymer films enhances the intersystem crossing pathway, decreases the first triplet level of the system, and ensures the films show a sensitive response to excitation energy, finally yielding excitation-dependent long-life luminescent polymeric systems under ambient conditions. These materials were used to construct anti-counterfeiting patterns with multicolor interconversion, presenting a promising application potential in the field of information security.  相似文献   

7.
Organic room temperature luminescent materials present a unique phosphorescence emission with a long lifetime. However, many of these materials only emit single blue or green color in spite of external stimulation, and their color tunability is limited. Herein, we report a rational design to extend the emission color range from blue to red by controlling the doping of simple pyrene derivatives into a robust polymer matrix. The integration of these pyrene molecules into the polymer films enhances the intersystem crossing pathway, decreases the first triplet level of the system, and ensures the films show a sensitive response to excitation energy, finally yielding excitation‐dependent long‐life luminescent polymeric systems under ambient conditions. These materials were used to construct anti‐counterfeiting patterns with multicolor interconversion, presenting a promising application potential in the field of information security.  相似文献   

8.
There are numerous numbers of hypoxia-selective luminescent probes based on oxygen quenching of phosphorescence.We show a unique design for luminescent probes to detect hyperoxia utilizing hybrid networks consisting of aggregation-induced emission(AIE)-active dyes and disulfide linkers.At the initial state,emission from the AIE-active dyes is inducible by suppressing energy-consumable intramolecular motions in the hybrid matrices,while the decrease in intensity was detected by releasing molecular motions corresponded to bond scission at the disulfide linkers.Particularly,it was shown that this process selectively proceeds in hypoxia.As a result,positive luminescent signals were obtained in hyperoxia.  相似文献   

9.
Aiming at the construction of novel rotaxanes with desired luminescent properties for practical applications, recently the rapid development of rotaxanes decorated with aggregation-induced emission(AIE) luminogens(i.e., AIEgens) has been witnessed. The combination of AIEgens and rotaxanes leads to the successful construction of a novel type of luminescent rotaxanes with many attractive features. In particular, the unique controllable dynamic feature of rotaxanes endows the resultant AIEgen-based...  相似文献   

10.
Aggregation-induced emission (AIE) is a unique and significant photophysical phenomenon that differs greatly from the commonly acknowledged aggregation-caused emission quenching observed for many π-conjugated planar chromophores. The mechanistic decipherment of the AIE phenomenon is of high importance for the advance of new AIE systems and exploitation of their potential applications. Propeller-like 2,3,4,5-tetraphenylsiloles are archetypal AIE-active luminogens, and have been adopted as a core part in the design of numerous luminescent materials with diverse functionalities. In this review article, we elucidate the impacts of substituents on the AIE activity and shed light on the structure–property relationship of siloles, with the aim of promoting the judicious design of AIE-active functional materials in the future. Recent representative advances of new silole-based functional materials and their potential applications are reviewed as well.  相似文献   

11.
A series of covalent organic cages built from fluorophores capable of aggregation-induced emission (AIE) were elegantly prepared through the reduction of preorganized M2(LA)3(LB)2-type metallacages, simultaneously taking advantage of the synthetic accessibility and well-defined shapes and sizes of metallacages, the good chemical stability of the covalent cages as well as the bright emission of AIE fluorophores. Moreover, the covalent cages could be further post-synthetically modified into an amide-functionalized cage with a higher quantum yield. Furthermore, these presented covalent cages proved to be good energy donors and were used to construct light-harvesting systems employing Nile Red as an energy acceptor. These light-harvesting systems displayed efficient energy transfer and relatively high antenna effect, which enabled their use as efficient photocatalysts for a dehalogenation reaction. This research provides a new avenue for the development of luminescent covalent cages for light-harvesting and photocatalysis.  相似文献   

12.
Hydration water greatly impacts the color of inorganic crystals, but it is still unknown whether hydration water can be utilized to systematically manipulate the emission color of organic luminescent groups. Now, metal ions with different hydration ability allow fine-tuning the emission color of a fluorescent group displaying aggregation induced emission (AIE). Because the hydration water can be removed easily by gentle heating or mechanical grinding and re-gained by solvent fuming, rewritable materials can be fabricated both in the hot-writing and cold-writing modes. This hydration-facilitated strategy will open up a new vista in fine-tuning the emission color of AIE molecules based on one synthesis and in the design of smart luminescent devices.  相似文献   

13.
We demonstrate multicolor tuning of aggregation-induced emission (AIE) derived from o-carborane. Both electron-donating and electron-accepting arylacetylenes underwent efficient palladium coupling reaction with bis(4-bromophenyl)-o-carborane, resulting in moderate yields. The emission spectra of these compounds span almost the entire visible spectrum (λ(max) = 452-662 nm). Study on AIE mechanism indicated that CT-based emission of o-carborane derivatives was enhanced by the restriction of molecular motions. The computational study also suggests the possibility of precise color-control of AIE through substituent variation.  相似文献   

14.
The last decade has witnessed rapid developments in aggregation‐induced emission (AIE). In contrast to traditional aggregation, which causes luminescence quenching (ACQ), AIE is a reverse phenomenon that allows robust luminescence to be retained in aggregated and solid states. This makes it possible to fabricate various highly efficient luminescent materials, which opens new paradigms in a number of fields, such as imaging, sensing, medical therapy, light harvesting, light‐emitting devices, and organic electronic devices. Of the various important features of AIE molecules, their self‐assembly behavior is very attractive because the formation of a well‐defined emissive nanostructure may lead to advanced applications in diverse fields. However, due to the nonplanar topology of AIEgens, it is not easy for them to self‐assemble into well‐defined structures. To date, some strategies have been proposed to achieve the self‐assembly of AIEgens. Herein, we summarize the most recent approaches for the self‐assembly of AIE molecules. These approaches can be sorted into two classes: 1) covalent molecular design and 2) noncovalent supramolecular interactions. We hope this will inspire more excellent work in the field of AIE.  相似文献   

15.
Copper nanoclusters (CuNCs) as a new class of fluorescent materials have attracted a great deal of interest due to their outstanding fluorescence properties. In this work, a variety of organic solvents were used to induce self-assembly of glutathione-capped CuNCs (GSH-CuNCs) to form ordered assemblies with enhanced fluorescence properties. Assemblies with multicolor fluorescence emission were constructed on the basis of the aggregation-induced emission (AIE) of GSH-CuNCs and the solvent effect. The fluorescence emission from these GSH-CuNCs assemblies can also be tuned from yellow to purple by changing the organic solvent. A possible mechanism based on the size of the assemblies and electron transfer was explored to explain the solvent effects on GSH-CuNCs. Stimuli-responsive nanoswitches with excellent reversibility can be controlled by changing the type of organic solvent and the ratio of the organic solvent to the aqueous solution of GSH-CuNCs. As the CuNCs assemblies exhibit strong, stable, and color-tunable fluorescence, they were employed as color-conversion materials for recognizing different organic solvents.  相似文献   

16.
Amorphous purely organic phosphorescence materials with long‐lived and color‐tunable emission are rare. Herein, we report a concise chemical ionization strategy to endow conventional poly(4‐vinylpyridine) (PVP) derivatives with ultralong organic phosphorescence (UOP) under ambient conditions. After the ionization of 1,4‐butanesultone, the resulting PVP‐S phosphor showed a UOP lifetime of 578.36 ms, which is 525 times longer than that of PVP polymer itself. Remarkably, multicolor UOP emission ranging from blue to red was observed with variation of the excitation wavelength, which has rarely been reported for organic luminescent materials. This finding not only provides a guideline for developing amorphous polymers with UOP properties, but also extends the scope of room‐temperature phosphorescence (RTP) materials for practical applications in photoelectric fields.  相似文献   

17.
The emergence of the rising alliance between aggregation-induced emission (AIE) and electrochemiluminescence (ECL) is defined as aggregation-induced electrochemiluminescence (AIECL). The booming science of AIE has proved to be not only distinguished in luminescent materials but could also inject new possibility into ECL analysis. Especially in the aqueous phase and solid state for hydrophobic materials, AIE helps ECL circumvent the dilemma between substantial emission intensity and biocompatible media. The wide range of analytes makes ECL an overwhelmingly interesting analytical technique. Therefore, AIECL has gained potential in clinical diagnostics, environmental assays, and biomarker detections. This review will focus on introduction of the novel concept of AIECL, current applied luminophores, and related applications developed in recent years.  相似文献   

18.
Hydration water greatly impacts the color of inorganic crystals, but it is still unknown whether hydration water can be utilized to systematically manipulate the emission color of organic luminescent groups. Now, metal ions with different hydration ability allow fine‐tuning the emission color of a fluorescent group displaying aggregation induced emission (AIE). Because the hydration water can be removed easily by gentle heating or mechanical grinding and re‐gained by solvent fuming, rewritable materials can be fabricated both in the hot‐writing and cold‐writing modes. This hydration‐facilitated strategy will open up a new vista in fine‐tuning the emission color of AIE molecules based on one synthesis and in the design of smart luminescent devices.  相似文献   

19.
Dynamic covalent polymer networks represent a rapidly emerging class of polymeric materials, capable of self-repairing when mechanically damaged. These materials also possess the ability to being dissolved and reformed, conferring upon objects made of such materials a longer service life, with positive economic and environmental impacts. While most such materials developed to date have a poorly-defined structure, as they are randomly cross-linked, better-defined dynamic covalent polymer networks comprising model building blocks attract increasing interest, both because of enhanced mechanical properties and offering themselves for more precise studies. This investigation presents the development of model dynamic covalent polymer networks, cross-linked via acylhydrazone bonds, and based on end-linked star oligomers, that is, having a size intermediate between polymeric stars and monomers. After their appropriate end-functionalization and purification, the oligomeric star building blocks were used to form polymeric networks in an organic solvent (organogels), which were subsequently characterized in terms of their swelling, mechanical, and dynamic properties.  相似文献   

20.
The research of photo-responsive materials, with changed absorption and emission under light stimulus, has drawn more and more attention due to their wide applications. However, most of them suffered from the notorious aggregation-caused quenching(ACQ) effect, which often led to the unconspicuous luminescent change in photo-responsive process. To solve this problem, the strategy of combining aggregation-induced emission(AIE) and photochromic properties was utilized, which largely enriched the phenomenon and application of photo-responsive materials. This short review summarized the recent progress of photo-responsive AIE materials with changed UV absorbance or PL phenomenon under UV-irradiation, including the types of molecular structures, internal mechanisms and the practical applications. Also, some outlooks were given on the further exploration of this field at the end of this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号