首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学快报》2023,34(4):107622
Controlling the particle size of catalyst to understand the active sites is the key to design efficient electrocatalysts toward hydrogen electrode reactions including hydrogen oxidation and evolution (HOR/HER). Herein, the hydrogen and hydroxyl adsorption on Ru/C could be effectively tuned for HOR/HER by simple controlling the particle sizes. It is found that the metallic Ru (Ru0) is the active site for HOR/HER, while oxidized Ru (Rux+) will hinder the adsorption and desorption of hydrogen on the catalyst. For the HOR, catalyst with small particles is more efficient, due to it is a three-phase interface reaction of gas on the surface of the catalyst. For the HER, the metallic state of Ru is crucial. The deconvolution of hydrogen peaks indicates that the catalytic sites with low hydrogen binding energy (HBE) shoulder the majority of the HOR activity. CO stripping curve further demonstrates that the stronger hydroxyl species (OHad) affinity is beneficial to promote the HOR performance. The results indicate that the design of efficient HOR/HER catalyst should focus on the balance between particle size and metallic states.  相似文献   

2.
Realization of the hydrogen economy relies on effective hydrogen production, storage, and utilization. The slow kinetics of hydrogen evolution and oxidation reaction (HER/HOR) in alkaline media limits many practical applications involving hydrogen generation and utilization, and how to overcome this fundamental limitation remains debatable. Here we present a kinetic study of the HOR on representative catalytic systems in alkaline media. Electrochemical measurements show that the HOR rate of Pt‐Ru/C and Ru/C systems is decoupled to their hydrogen binding energy (HBE), challenging the current prevailing HBE mechanism. The alternative bifunctional mechanism is verified by combined electrochemical and in situ spectroscopic data, which provide convincing evidence for the presence of hydroxy groups on surface Ru sites in the HOR potential region and its key role in promoting the rate‐determining Volmer step. The conclusion presents important references for design and selection of HOR catalysts.  相似文献   

3.
Hydrogen energy is considered as one of the ideal clean energies for solving the energy shortage and environmental issues, and developing highly efficient electrocatalysts for overall water splitting to produce hydrogen is still a huge challenge. Herein, for the first time, Ru-doped Cu2+1O vertically arranged nanotube arrays in situ grown on Cu foam (Ru/Cu2+1O NT/CuF) are reported and further investigated for their catalytic properties for overall water splitting. The Ru/Cu2+1O NT/CuF presents ultrahigh catalytic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline conditions, and it exhibits a small overpotential of 32 mV at 10 mA cm−2 in the HER, and only needs 210 mV overpotential to achieve a current density of 10 mA cm−2 in the OER. Importantly, the alkaline electrolyzer using Ru/Cu2+1O NT/CuF as a bifunctional electrocatalyst only needs 1.53 V voltage to deliver a current density of 10 mA cm−2, which is much lower than the benchmark of IrO2(+)/Pt(−) counterpart (1.64 V at 10 mA cm−2). The excellent performance of the Ru/Cu2+1O NT/CuF catalyst is attributed to its high conductive substrate and special Ru-doped nanotube structure, which provides a high electrochemical active surface area and 3D gas diffusion channel.  相似文献   

4.
《中国化学快报》2023,34(7):107788
Alkaline hydrogen evolution reaction (HER) suffers from a sluggish kinetic, which requires the elaborate catalytic interface and micro-nanoscale architecture engineering of the electrocatalysts to accelerate the water dissociation and hydrogen evolution. Herein, the heterointerface engineering was proposed for promoting the alkaline HER by constructing the highly exposed Ru/RuS2 heterostructures homogeneously distributed on hollow N/S-doped carbon microspheres (Ru/RuS2@h-NSC). Benefited from the synergistic effect of heterointerfacial Ru/RuS2, the high accessibility of the active sites on both inner and outer surface of mesoporous shells and the efficient mass transport, Ru/RuS2@h-NSC affords a remarkable catalytic performance with an overpotential of 26 mV@10 mA/cm2 for alkaline HER, outperforming most of the state-of-the-art catalysts. Further applying Ru/RuS2@h-NSC and its oxidized derivate for the overall alkaline water splitting, the required cell voltage is much lower than that of the commercial Pt/C||RuO2 pair to achieve the same current density. Our study may allow us to guide the design of micro-nanoreactors with optimal catalytic interfaces for promising electrocatalytic applications.  相似文献   

5.
Amorphous phosphorus nitride imide nanotubes (HPN) are reported as a novel substrate to stabilize materials containing single‐metal sites. Abundant dangling unsaturated P vacancies play a role in stabilization. Ruthenium single atoms (SAs) are successfully anchored by strong coordination interactions between the d orbitals of Ru and the lone pair electrons of N located in the HPN matrix. The atomic dispersion of Ru atoms can be distinguished by X‐ray absorption fine structure measurements and spherical aberration correction electron microscopy. Importantly, Ru SAs@PN is an excellent electrocatalyst for the hydrogen evolution reaction (HER) in 0.5 m H2SO4, delivering a low overpotential of 24 mV at 10 mA cm?2 and a Tafel slope of 38 mV dec?1. The catalyst exhibits robust stability in a constant current test at a large current density of 162 mA cm?2 for more than 24 hours, and is operative for 5000 cycles in a cyclic voltammetry test. Additionally, Ru SAs@PN presents a turnover frequency (TOF) of 1.67 H2 s?1 at 25 mV, and 4.29 H2 s?1 at 50 mV, in 0.5 m H2SO4 solution, outperforming most of the reported hydrogen evolution catalysts. Density functional theory (DFT) calculations further demonstrate that the Gibbs free energy of adsorbed H* over the Ru SAs on PN is much closer to zero compared with the Ru/C and Ru SAs supported on carbon and C3N4, thus considerably facilitating the overall HER performance.  相似文献   

6.
The outstanding electrocatalytic activity of ruthenium (Ru) phosphides toward the hydrogen evolution reaction (HER) has received wide attention. However, the effect of the Ru phosphide phase on the HER performance remains unclear. Herein, a two-step method was developed to synthesize nanoparticles of three types of Ru phosphides, namely, Ru2P, RuP, and RuP2, with similar morphology, dimensions, loading density, and electrochemical surface area on graphene nanosheets by simply controlling the dosage of phytic acid as P source. Electrochemical tests revealed that Ru2P/graphene shows the highest intrinsic HER activity, followed by RuP/graphene and RuP2/graphene. Ru2P/graphene affords a current density of 10 mA cm−2 at an overpotential of 18 mV in acid media. Theoretical calculations further showed that P-deficient Ru2P has a lower free energy of hydrogen adsorption on the surface than other two, P-rich Ru phosphides (RuP, RuP2), which confirms the excellent intrinsic HER activity of Ru2P and is consistent with experiment results. The work reveals for the first time a clear trend of HER activity among three Ru phosphide phases.  相似文献   

7.
《中国化学快报》2021,32(11):3591-3595
Crystalline engineering and heterostructure have attracted much attention as effective strategies to improve the electrocatalytic activity for hydrogen evolution reaction (HER). In this study, a new heterostructure catalyst (Ru/RuS2@N-rGO) with low crystallinity was fabricated by a simple and low-temperature method for HER in alkaline solution, applying the Na2SO4 as S source and polypyrrole as N source. Optimizing through the controllable crystalline engineering and composition ratio of Ru and RuS2, the Ru/RuS2@N-rGO heterocatalyst at the calcining 500 °C revealed highly efficient HER activity with overpotential 18 mV at a current density 10 mA/cm2 and remarkable stability for 24 h in 1.0 mol/L KOH. This work provides a facile and effective method in designing advanced electrocatalysts for HER in the alkaline electrolytes by synergistically structural and component modulations.  相似文献   

8.
A challenging but pressing task to design and synthesize novel, efficient, and robust pH‐universal hydrogen evolution reaction (HER) electrocatalysts for scalable and sustainable hydrogen production through electrochemical water splitting. Herein, we report a facile method to prepare an efficient and robust Ru‐M (M=Ni, Mn, Cu) bimetal nanoparticle and carbon quantum dot hybrid (RuM/CQDs) for pH‐universal HER. The RuNi/CQDs catalysts exhibit outstanding HER performance at all pH levels. The unexpected low overpotentials of 13, 58, and 18 mV shown by RuNi/CQDs allow a current density of 10 mA cm?2 in 1 m KOH, 0.5 m H2SO4, and 1 m PBS, respectively, for Ru loading at 5.93 μgRu cm?2. This performance is among the best catalytic activities reported for any platinum‐free electrocatalyst. Theoretical studies reveal that Ni doping results in a moderate weakening of the hydrogen bonding energy of nearby surface Ru atoms, which plays a critical role in improving the HER activity.  相似文献   

9.
A challenging but pressing task to design and synthesize novel, efficient, and robust pH-universal hydrogen evolution reaction (HER) electrocatalysts for scalable and sustainable hydrogen production through electrochemical water splitting. Herein, we report a facile method to prepare an efficient and robust Ru-M (M=Ni, Mn, Cu) bimetal nanoparticle and carbon quantum dot hybrid (RuM/CQDs) for pH-universal HER. The RuNi/CQDs catalysts exhibit outstanding HER performance at all pH levels. The unexpected low overpotentials of 13, 58, and 18 mV shown by RuNi/CQDs allow a current density of 10 mA cm−2 in 1 m KOH, 0.5 m H2SO4, and 1 m PBS, respectively, for Ru loading at 5.93 μgRu cm−2. This performance is among the best catalytic activities reported for any platinum-free electrocatalyst. Theoretical studies reveal that Ni doping results in a moderate weakening of the hydrogen bonding energy of nearby surface Ru atoms, which plays a critical role in improving the HER activity.  相似文献   

10.
Hydroxide‐exchange membrane fuel cells can potentially utilize platinum‐group‐metal (PGM)‐free electrocatalysts, offering cost and scalability advantages over more developed proton‐exchange membrane fuel cells. However, there is a lack of non‐precious electrocatalysts that are active and stable for the hydrogen oxidation reaction (HOR) relevant to hydroxide‐exchange membrane fuel cells. Here we report the discovery and development of Ni3N as an active and robust HOR catalyst in alkaline medium. A supported version of the catalyst, Ni3N/C, exhibits by far the highest mass activity and break‐down potential for a PGM‐free catalyst. The catalyst also exhibits Pt‐like activity for hydrogen evolution reaction (HER) in alkaline medium. Spectroscopy data reveal a downshift of the Ni d band going from Ni to Ni3N and interfacial charge transfer from Ni3N to the carbon support. These properties weaken the binding energy of hydrogen and oxygen species, resulting in remarkable HOR activity and stability.  相似文献   

11.
An Ru-doping strategy is reported to substantially improve both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalytic activity of Ni/Fe-based metal–organic framework (MOF) for overall water splitting. As-synthesized Ru-doped Ni/Fe MIL-53 MOF nanosheets grown on nickel foam (MIL-53(Ru-NiFe)@NF) afford HER and OER current density of 50 mA cm−2 at an overpotential of 62 and 210 mV, respectively, in alkaline solution with a nominal Ru loading of ≈110 μg cm−2. When using as both anodic and cathodic (pre-)catalyst, MIL-53(Ru-NiFe)@NF enables overall water splitting at a current density of 50 mA cm−2 for a cell voltage of 1.6 V without iR compensation, which is much superior to state-of-the-art RuO2-Pt/C-based electrolyzer. It is discovered that the Ru-doping considerably modulates the growth of MOF to form thin nanosheets, and enhances the intrinsic HER electrocatalytic activity by accelerating the sluggish Volmer step and improving the intermediate oxygen adsorption for increased OER catalytic activity.  相似文献   

12.
This work demonstrates the outstanding performance of alloyed Au_1 Pt_1 nanoparticles on hydrogen oxidation reaction(HOR) in alkaline solution. Due to the weakened hydrogen binding energy caused by uniform incorporation of Au, the alloyed Au_1 Pt_1/C nanoparticles exhibit superior HOR activity than commercial Pt Ru/C. On the contrary, the catalytic performance of the phase-segregated Au_2 Pt_1/C and Au_1 Pt_1/C bimetallic nanoparticles in HOR is significantly worse. Moreover, Au_1 Pt_1/C shows a remarkable durability with activity dropping only 4% after 3000 CV cycles, while performance attenuation of commercial Pt Ru/C is high up to 15% under the same condition. Our results indicate that the alloyed Au_1 Pt_1/C is a promising candidate to substitute commercial Pt Ru/C for hydrogen oxidation reaction in alkaline electrolyte.  相似文献   

13.
Tailor-made advanced electrocatalysts with high active and stable for hydrogen evolution reaction (HER)play a key role in the development of hydrogen economy.Herein,a N,P-co-doped molybdenum carbide confined in porous carbon matrix (N,P-Mo2C/NPC) with a hierarchical structure is prepared by a resources recovery process.The N,P-Mo2C/NPC compound exhibits outstanding HER activity with a low overpotential of 84 mV to achieve 10 mA/cm2,and excellent stability in alka...  相似文献   

14.
Water electrolysis for H2 production is restricted by the sluggish oxygen evolution reaction (OER). Using the thermodynamically more favorable hydrazine oxidation reaction (HzOR) to replace OER has attracted ever-growing attention. Herein, we report a twisted NiCoP nanowire array immobilized with Ru single atoms (Ru1−NiCoP) as superior bifunctional electrocatalyst toward both HzOR and hydrogen evolution reaction (HER), realizing an ultralow working potential of −60 mV and overpotential of 32 mV for a current density of 10 mA cm−2, respectively. Inspiringly, two-electrode electrolyzer based on overall hydrazine splitting (OHzS) demonstrates outstanding activity with a record-high current density of 522 mA cm−2 at cell voltage of 0.3 V. DFT calculations elucidate the cooperative Ni(Co)−Ru−P sites in Ru1−NiCoP optimize H* adsorption, and enhance adsorption of *N2H2 to significantly lower the energy barrier for hydrazine dehydrogenation. Moreover, a self-powered H2 production system utilizing OHzS device driven by direct hydrazine fuel cell (DHzFC) achieve a satisfactory rate of 24.0 mol h−1 m−2.  相似文献   

15.
Rational design of efficient, stable, and inexpensive bifunctional electrocatalysts for oxygen evolution reactions (OER) and hydrogen evolution reactions (HER) is a key challenge to realize green hydrogen production via electrolytic water splitting. Herein, Ru nanoparticles and FeNi alloy heterojunction catalyst (Ru−FeNi@NLC) encapsulated via lignin-derived carbon was prepared by self-assembly precipitation and in situ pyrolysis. The designed catalyst displays excellent performance at 10 mA cm−2 with low overpotentials of 36 mV for HER and 198 mV for OER, and only needs 1.48 V for overall water splitting. Results and DFT calculations show the unique N-doped lignin-derived carbon layer and Ru−FeNi heterojunction contribute to optimized electronic structure for enhancing electron transfer, balanced free energy of reactants and intermediates in the sorption/desorption process, and significantly reduced reaction energy barrier for the HER and OER rate-determining steps, thus improved reaction kinetics. This work provides a new in situ pyrolysis doping strategy based on renewable biomass for the construction of highly active, stable and cost-effective catalysts.  相似文献   

16.
Electrochemical hydrogen generation is a rising prospect for future renewable energy storage and conversion. Platinum remains a leading choice of catalyst, but because of its high cost and low natural abundance, it is critical to optimize its use. In the present study, platinum oxide nanoparticles of approximately 2 nm in diameter are deposited on carbon nitride (C3N4) nanosheets by thermal refluxing of C3N4 and PtCl2 or PtCl4 in water. These nanoparticles exhibit apparent electrocatalytic activity toward the hydrogen evolution reaction (HER) in acid. Interestingly, the HER activity increases with increasing Pt4+ concentration in the nanoparticles, and the optimized catalyst even outperforms commercial Pt/C, exhibiting an overpotential of only −7.7 mV to reach the current density of 10 mA cm−2 and a Tafel slope of −26.3 mV dec−1. The results from this study suggest that the future design of platinum oxide catalysts should strive to maximize the Pt4+ sites and minimize the formation of the less active Pt2+ species.  相似文献   

17.
Highly active and durable electrocatalysts are essential for producing hydrogen fuel through the hydrogen evolution reaction (HER). Here, a uniform deposition of Ru nanoparticles strongly interacting with oxygen-rich carbon nanotube architectures (Ru-OCNT) through ozonation and hydrothermal approaches has been designed. The hierarchical structure of Ru-OCNT is made by self-assembly of oxygen functionalities of OCNT. Ru nanoparticles interact strongly with OCNT at the Ru/OCNT interface to give excellent catalytic activity and stability of the Ru-OCNT, as further confirmed by density functional theory. Owing to the hierarchical structure and adjusted surface chemistry, Ru-OCNT has an overpotential of 34 mV at 10 mA cm−2 with a Tafel slope of 27.8 mV dec−1 in 1 M KOH, and an overpotential of 55 mV with Tafel slope of 33 mV dec−1 in 0.5 M H2SO4. The smaller Tafel slope of Ru-OCNT than Ru-CNT and commercial Pt/C in both alkaline and acidic electrolytes indicates high catalytic activity and fast charge transfer kinetics. The as-proposed chemistry provides the rational design of hierarchically structured CNT/nanoparticle electrocatalysts for HER to produce hydrogen fuel.  相似文献   

18.
The search for highly efficient platinum group metal (PGM)‐free electrocatalysts for the hydrogen oxidation reaction (HOR) in alkaline electrolytes remains a great challenge in the development of alkaline exchange membrane fuel cells (AEMFCs). Here we report the synthesis of an oxygen‐vacancy‐rich CeO2/Ni heterostructure and its remarkable HOR performance in alkaline media. Experimental results and density functional theory (DFT) calculations indicate the electron transfer between CeO2 and Ni could lead to thermoneutral adsorption free energies of H* (ΔGH*). This, together with the promoted OH* adsorption strength derived from the abundance of oxygen vacancies in the CeO2 species, contributes to the excellent HOR performance with the exchange current density and mass activity of 0.038 mA cmNi?2 and 12.28 mA mgNi?1, respectively. This presents a new benchmark for PGM‐free alkaline HOR and opens a new avenue toward the rational design of high‐performance PGM‐free electrocatalysts for alkaline HOR.  相似文献   

19.
Electrocatalysis is the most promising strategy to generate clean energy H2, and the development of catalysts with excellent hydrogen evolution reaction (HER) performance at high current density that can resist strong alkaline and acidic electrolyte environment is of great significance for practical industrial application. Therefore, a P doped MoS2@Ni3S2 nanorods array (named P-NiMoS) was successfully synthesized through successive sulfuration and phosphorization. P-NiMoS presents a core/shell structure with a heterojunction between MoS2 (shell) and Ni3S2 (core). Furthermore, the doping of P modulates the electronic structure of the P-NiMoS; the electrons transfer from the t2g orbital of Ni element to the eg empty orbital of Mo element through the Ni−S−Mo bond at the Ni3S2 and MoS2 heterojunction, facilitating the hydrogen evolution reaction. As a result, P-NiMoS exhibits excellent HER activity; the overpotential is 290 mV at high current density of 250 mA cm−2 in alkaline electrolyte, which is close to Pt/C (282 mV@250 mA cm−2), and P-NiMoS can stably evolve hydrogen for 48 h.  相似文献   

20.
High-entropy alloy (HEA) catalysts have been widely studied in electrocatalysis. However, identifying atomic structure of HEA with complex atomic arrangement is challenging, which seriously hinders the fundamental understanding of catalytic mechanism. Here, we report a HEA-PdNiRuIrRh catalyst with remarkable mass activity of 3.25 mA μg−1 for alkaline hydrogen oxidation reaction (HOR), which is 8-fold enhancement compared to that of commercial Pt/C. Through machine learning potential-based Monte Carlo simulation, we reveal that the dominant Pd−Pd−Ni/Pd−Pd−Pd bonding environments and Ni/Ru oxophilic sites on HEA surface are beneficial to the optimized adsorption/desorption of *H and enhanced *OH adsorption, contributing to the excellent HOR activity and stability. This work provides significant insights into atomic structure and catalytic mechanism for HEA and offers novel prospects for developing advanced HOR electrocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号