首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Cadmium salts with different triazole ligands have led to a series of novel triazole-cadmium compounds varying from zero- to three-dimensionality. [Cd(2)(deatrz)(2)(H(2)O)Br(4)] (1) (deatrz = 3,5-diethyl-4-amino-1,2,4-triazole) is a zero-dimensional complex which uses a triazole ligand together with micro-OH(2) as bridges to form a 1D chain via hydrogen-bonding contacts. [[Cd(3)(deatrz)(2)Cl(6)(H(2)O)(2)].2H(2)O](n) (2), [[Cd(dmtrz)Cl(2)].1.5H(2)O](n)(3) (dmtrz = 3,5-dimethyl-1,2,4-triazole), and [[Cd(3)(deatrz)(4)Cl(2)(SCN)(4)].2H(2)O](n)(4) are polymeric 1D chains. 2 and 4 were constructed via trinuclear cadmium units bridged by triazole ligands and chloride atoms, while 3 consists of micro(2)-Cl, micro(3)-Cl, and triazole bridges, cross-linked by hydrogen bonding to give a 3D framework. [[Cd(3)(dmatrz)(4)(SCN)(6)]](n)(5) (dmatrz = 3,5-dimethyl-4-amino-1,2,4-triazole) shows a two-dimensional structure whose fundamental units are trinuclear metal cations bridged via triazole ligands. The complex [[Cd(dmtrz)(SCN)(2)]](n)(6) is the first three-dimensional example in N1,N2-didentate-bridged triazole-metal compounds. Six complexes exhibit six types of bridging modes of N1,N2-triazole in combination with single-atom bridges. 2, 4, and 5 are the unprecedented examples of polymeric chains and planes constructed via trinuclear metal ion clusters, whereas 3 is the first example of the micro(3)-Cl bridging mode in triazole-metal complexes. We have briefly discussed the variety of dimensionalities based on the tuning of different organic ligands and anions.  相似文献   

2.
Using two 4-substitued triazole ligands, 4-(pyrid-2-yl)-1,2,4-triazole (L(1)) and 4-(pyrid-3-yl)-1,2,4-triazole (L(2)), a series of novel triazole-cadmium(II) complexes varying from zero- to three-dimensional have been prepared and their crystal structures determined via single-crystal X-ray diffraction. [Cd(2)(micro(2)-L(1))(3)(L(1))(2)(NO(3))(mu(2)-NO(3))(H(2)O)(2)](NO(3))(2).1.75H(2)O (1) is a binuclear complex containing bidendate, monodedate and free nitrate anions. When the bridging anions SCN(-) and dca (dca = N(CN)(2)(-)) were added to the reaction system of 1, one-dimensional (1D) [Cd(L(1))(2)(NCS)(2)](n) (2) and two-dimensional (2D) [Cd(L(1))(2)(dca)(2)](n) (3) were isolated, respectively. When L(2) instead of L(1) was used, [Cd(L(2))(2)(NCS)(2)(H(2)O)(2)] (4) and 1D [Cd(L(2))(2)(dca)(2)](n) (5) were obtained. When the ratio of Cd to L(2) was changed from 1:2 to 1:1 in the reaction system of 5, three-dimensional (3D) {[Cd(3)(micro(2)-L(2))(3)(dca)(6)].0.75H(2)O}(n) (6) with 1D microporous channels along the a direction was isolated. Further investigations on other Cd(ii) salts and the L(2) ligand in a Cd to L(2) ratio of 1:1, an unexpected complex [Cd(mu(2)-L(2))(mu(3)-SO(4))(H(2)O)](n) (7) with a 3D open framework was obtained. All of the complexes exhibit strong blue fluorescence emission bands in the solid state at ambient temperature, of which the excitation and emission maxima are red-shifted to longer wavelength as compared to those in water. Powder X-ray diffraction and thermal studies were used to investigate the bulk nature of the 3D coordination polymers 6 and 7.  相似文献   

3.
This perspective illustrates the coordination features of complexes constructed by 1,2,4-triazole derivatives and transition metal ions which belong to Group IIB, namely Zn(II), Cd(II) and Hg(II), demonstrates their behaviors in thermal stabilities, gas or liquid adsorption, fluorescence and nonlinear optical properties and also discusses the relation between their properties and crystal structures. Various 1,2,4-triazole derivatives containing versatile donor sites for coordination can be obtained through introducing different substituent groups to C3, N4 and C5 positions, thus offering rich coordination modes. The structures of these complexes rely on their triazole ligands, as well as mixed ligands, metal ions, anions and synthetic conditions. Obviously, the diversity in structure induces the controllability of properties, since the properties are influenced by several factors, which is significant for the applications of potential multifunctional materials.  相似文献   

4.
The cadmium(II) complex with the condensation product of salicylaldehyde and 3-(pyridine-2-yl)-5-(2-aminophenyl)-1H-1,2,4-triazole (H2L), Cd2(H2L)2(OAc)4 · 3EtOH, is synthesized. Its crystal structure is studied by X-ray diffraction analysis. In the centrosymmetric binuclear complex (Cd…Cd 3.938(1)Å), the Cd atoms are bonded by two tridentate bridging acetate anions. Two other acetate anions are terminal and coordinated by the monodentate mode. The coordination polyhedron of the Cd atom is a distorted octahedron. The triazole ligands are bonded to the cadmium cations through the N atoms of the pyridine cycle and triazole ring.  相似文献   

5.
Five novel Cd(II) coordination polymers with three structurally related flexible disulfoxide ligands, [[Cd(L1)3](ClO4)2]n (1), [[Cd(L2)3](ClO4)2(CHCl3)]n (2), [Cd(L2)(NO3)2(H2O)]n (3), [Cd2(L3)2(NO3)4]n (4) and [[Cd(L3)3](ClO4)2]n (5), where L1= 1,3-bis(phenylsulfinyl)propane, L2= 1,4-bis(phenylsulfinyl)butane and L3= 1,4-bis(ethylsulfinyl)butane, were synthesized and structurally determined by X-ray diffraction. Complex 1 has a 2D layer structure, in which part of the L1 ligands bridge the Cd(II) ions to form double-bridging chains and the other part of ligands link such chains to form a 2D framework. Complexes 2 and 5 are isomorphous, showing unusual 2D (3,6) network structures containing triangular grids. Complex 3 adopts a 2D (4,4) network formed by L2 linking the NO3- bridged (Cd-O-N-O-)n 1D zigzag chains. By contrast, is a 1D chain, in which two Cd(II) centers are bridged by mu2-O of sulfoxide groups to form a dinuclear unit, and L3 ligands link such dinuclear units to form a 1D double-bridging chain. The structural differences among such complexes show that the ligand nature and counter anions have important influences on the complex structures, which may provide a rational method for controlling the framework formation in metal-organic coordination polymers.  相似文献   

6.
An investigation into the dependence of the framework formation of coordination architectures on ligand spacers and terminal groups was reported based on the self-assembly of AgClO4 and eight structurally related flexible dithioether ligands, RS(CH2)nSR (Lan, R = ethyl group; Lbn, R = benzyl group, n= 1-4). Eight novel metal-organic architectures, [Ag(La1)3/2ClO4]n (1a), [Ag2(La2)2(ClO4)2]2 (2a), [AgLa3ClO4]n (3a), {[Ag(La4)2]ClO4}n (4a), [AgLb1ClO4]2 (1b), [Ag(Lb2)2]ClO4 (2b), {[Ag(Lb3)3/2(ClO4)1/2](ClO4)1/2}n (3b) and [Ag(Lb4)3/2ClO4]n(4b), were synthesized and structurally characterized by X-ray crystallography. Structure diversities were observed for these complexes: 1a forms a 2-D (6,3) net, while 2a is a discrete tetranuclear complex, in which the AgI ion adopts linear and tetrahedral coordination modes, and the S donors in each ligand show monodentate terminal and mu2-S bridging coordination fashions; 3a has a chiral helical chain structure in which two homo-chiral right-handed single helical chains (Ag-La3-)n are bound together through mu2-S donors, and simultaneously gives rise to left-handed helical entity (Ag-S-)n. In 4a, left- and right-handed helical chains formed by the ligands bridging AgI centers are further linked alternately by single-bridging ligands to form a non-chiral 2-D framework. 1b has a dinuclear structure showing obvious ligand-sustained Ag-Ag interaction, while 2b is a mononuclear complex; 3b is a 3-D framework formed by ClO4- linking the 2-D (6,3) framework, which is similar to that of 1a, and 4b has a single, double-bridging chain structure in which 14-membered dinuclear ring units formed through two ligands bridging two AgI ions are further linked by single-bridging ligands. In addition, a systematic structural comparison of these complexes and other reported AgClO4 complexes of analogous dithioether ligands indicates that the ligand spacers and terminal groups take essential roles on the framework formation of the AgI complexes, and this present feasible ways for adjusting the structures of such complexes by modifying the ligand spacers and terminal groups.  相似文献   

7.
分别以3-(2-吡啶基)-4-苯基-5-(2-噻吩基)-1,2,4-三氮唑(L1)和3-(2-吡啶基)-4-(4-氯苯基)-5-(2-噻吩基)-1,2,4-三氮唑(L2)作为配体,合成了2个新的单核铜配合物:trans-[Cu(L1)2(Me OH)2](Cl O4)2(1)和trans-[Cu(L2)2(Cl O4)2]·2Me CN(2),并对其进行了红外、元素分析、单晶结构和粉末X射线衍射表征。2个配合物都属于单斜晶系,P21/c空间群。单晶结构分析表明,配合物1和2中的铜离子均处于一个扭曲的八面体配位环境[Cu N4O2],其中1的轴向由2个甲醇分子配位,而2的轴向由2个高氯酸根配位。处于赤道面的配体的吡啶N原子和三氮唑的一个N原子采用螯合双齿模式参与配位,而噻吩不配位。配合物2含2个乙腈客体分子,乙腈与三氮唑环之间存在π…π堆积作用。配合物1和2中存在O—H…O、C—H…O、C—H…N氢键和C—H…π相互作用,从而连接单核配合物形成三维网络。  相似文献   

8.
By using tridentate ligand 4-(3-pyridinyl)-1,2,4-triazole (pytrz), cage-like complexes of {[Cu(mu2-pytrz)2](ClO4)(SO4)0.5C2H5OH.0.25 H2O}6 (1), {[Cu3(mu3-pytrz)4(mu2-Cl)2(H2O)2](ClO4)2Cl(2).2 H2O}n (2), and {[Cu3(mu3-pytrz)3(mu3-O)(H2O)3](ClO4)2.5(BF4)(1.5)5.25 H2O}n (3) have been synthesized with different copper(II) salts. Complex 1 represents the second example of a M6L12 metal-organic octahedron with an overall Th symmetry. Complex 2 is constructed from a 3(8) cage-building unit (CBU) and each CBU connects six neighboring cages to give the first 3D metal-organic framework (MOF) based on octahedral M6L12. Complex 3 is built from Cu24(pytrz)12 CBUs with the trinuclear copper clusters serving as second building units (SBUs) and decorating each corner of the M24L12 polyhedron. The Cu24(pytrz)12 building unit is linked by extra ligands to give an extended 3D framework that has the formula Cu24(pytrz)24 and possesses a CaB6 topology. The mixed anions ClO4- and BF4- in 3 are both included in the inner cavity of the cage and can be completely exchanged by ClO4- through the open windows of the cage, as evidenced by the crystal structure of the 3D MOF {[Cu3(mu3-pytrz)3(mu3-O)(H2O)3](ClO4)(4)4.5 H2O}n (4). Complex 4 can also be synthesized when employing 1 as a precursor in an extensive study of the anion-exchange reaction. This represents the first successful conversion of a discrete cage into a 3D coordination network based on a cage structure. Complex 2 remains invariable during anion-exchange reactions because uncoordinated Cl- ions are located in the comparatively small inner cavity.  相似文献   

9.
Ten new chiral coordination polymers, namely, [Ni(L)(H(2)O)(2)] (1), [Co(L)(H(2)O)(2)] (2), [Cd(L)(H(2)O)] (3), [Cd(L)(phen)] (4), [Mn(2)(L)(2) (phen)(2)]·H(2)O (5), [Cd(2)(L)(2)(biim-4)(2)] (6), [Zn(2)(L)(2)(biim-4)(2)] (7), [Cd(L)(pbib)] (8), [Cd(L)(bbtz)] (9) and [Cd(L)(biim-6)] (10), where phen = 1,10-phenathroline, biim-4 = 1,1'-(1,4-butanediyl)bis(imidazole), pbib = 1,4-bis(imidazole-1-ylmethyl)benzene, bbtz = 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene, biim-6 = 1,1'-(1,6-hexanedidyl)bis(imidazole), and H(2)L = (R)-2-(4'-(4'-carboxybenzyloxy)phenoxy)propanoic acid, have been synthesized under hydrothermal conditions. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by infrared spectra (IR), powder X-ray diffraction (PXRD), elemental analyses and thermogravimetric (TG) analyses. Compounds 1 and 2 exhibit similar 1D left-handed helical chains, which are further extended into 3D supramolecular structures through O-H···O hydrogen-bonding interactions, respectively. Compound 3 shows a 2D double-layer architecture containing helical chains. Compound 4 features two types of 2D undulated sheets with helical chains, which are stacked in an ABAB fashion along the c direction. Compound 5 possesses a 1D double chain ribbon structure containing unusual meso-helical chains, which is linked by π-π interactions into a 2D supramolecular layer. These layers are further extended by hydrogen-bonding interactions to form a 3D supramolecular assembly. Compounds 6 and 7 are isostructural and exhibit 2D (4(4))-sql networks with helical chains. Neighboring sheets are further linked by C-H···O hydrogen-bonding interactions to generate 3D supramolecular architectures. Compounds 8-10 are isostructural and display 3D 3-fold interpenetrating diamond frameworks with helical chains. The effects of coordination modes of L anions, metal ions and N-donor ligands on the structures of the coordination polymers have been discussed. The luminescent properties of 3, 4 and 6-10 have also been investigated in detail.  相似文献   

10.
Rational self-assembly of a long V-shaped 3,3',4,4'-benzophenonetetracarboxylate (bptc) ligand and metal salts in the presence of linear bidentate ligand yield a series of novel pillared helical-layer complexes, namely, [Cu2(bptc)(bpy)2] (1), [M3(Hbptc)2(bpy)3(H2O)4].2 H2O (M = Fe(2) and Ni(3)), [Co2(bptc)(bpy)(H2O)].0.5 bpy (4), [Cd2(bptc)(bpy)(H2O)2].H2O (5), [Mn2(bptc)(bpy)1.5(H2O)3] (6) and [M2(bptc)(bpy)0.5(H2O)5].0.5 bpy (M = Mn(7), Mg(8) and Co(9), bpy=4,4'-bipyridine). Their structures were determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, and thermogravimetric (TG) analyses. The structure of 1 consists of two types of chiral layers, one left-handed and the other right-handed, which are connected by bpy pillars to generate a novel 3D open framework featuring four distinct helical chains. Compounds 2 and 3 are isostructural and feature 3D structures formed from the interconnection of arm-shaped helical layers with bpy pillars. Compound 4 is a pillared helical double-layer complex containing four different types of helices, among which the nine-fold interwoven helices constructed from triple-stranded helical motifs are unprecedented. Compound 5 exhibits a novel 3D covalent framework which features nanosized tubular channels. These channels are built from helical layers pillared by bptc ligands. The structure of 6 is constructed from {Mn(bptc)(H2O)}n2n- layers, which consist of left- and right-handed helical chains, pillared by [Mn2(bpy)3(H2O)4]4+ complexes into a 3D framework. To the best of our knowledge, compounds 1-6 are the first examples of pillared helical-layer coordination polymers. Compounds 7-9 are isostructural and exhibit interesting 2D helical double-layer structures, which are constructed from {M(bptc)(H2O)2}n2n- ribbons cross-linked by [M2(bpy)(H2O)6]4+ complexes. Furthermore, the 3D supramolecular structures of 7-9 are similar to the 3D structure of 6, and the 2D structure of 7 can be transformed into the 3D structure of 6 at higher reaction temperature. By inspection of the structures of 1-9, it is believed that the V-shaped bptc ligand and V-shaped phthalic group of the bptc ligand are important for the formation of the helical structures. The magnetic behavior of compounds 1, 2, 4, 6, and 9 was studied and indicated the existence of antiferromagnetic interactions. Moreover, compound 5 shows intense photoluminescence at room temperature.  相似文献   

11.
A Schiff base ligand 1‐salicylideneamino‐1,3,4‐triazole (L) was prepared. Two new complexes with Schiff base, [Zn(L)2(SCN)2] ( 1 ) and [Co2(L)5(SCN)4]·H2O ( 2 ) have been synthesized and structurally characterized. Complex 1 takes a mononuclear zinc structure and the coordination geometry of zinc atom exhibits a distorted tetrahedron, in which a zig‐zag chain is constructed through hydrogen bonding interactions. A 2D supramolecular network is formed through Π‐Π stacking between triazole planes and phenyl planes of adjacent chains, and a 3D supramolecular network is further constructed by these non‐covalent Π‐Π stacking interactions between the triazole planes of neighboring layers. Complex 2 takes a dinuclear structure with the bidentate‐bridging Schiff base ligands, and cobalt site exhibits a distorted octahedron. The lattice water molecules and neutral complex 2 units form a dimer with hydrogen bonding interactions. In addition, IR and thermal gravimetric analysis are presented.  相似文献   

12.
Li XP  Zhang JY  Pan M  Zheng SR  Liu Y  Su CY 《Inorganic chemistry》2007,46(11):4617-4625
Four Ag(I) complexes of a triangular multidentate ligand 1,3,5-tri(2-benzimidazolyl)benzene (H3TBimB), namely, [Ag2(H3TBimB)2](CF3SO3)2 (1), [Ag4(HTBimB)2]n (2), [Ag9(HTBimB)4(TAZ)]n (HTAZ=1,2,4-triazole) (3), and [Ag17(TBimB)5(HTBimB)(H2O)5]n.nH2O (4), have been synthesized at different pH values adjusted by addition of NH3.H2O under solvothermal conditions and characterized by X-ray single-crystal diffraction. Complex 1 shows an M2L2 dimeric structure, 2 displays a one-dimensional chain containing M4L2 basic units, 3 is a two-dimensional network built up from an M9L4 subunit, and 4 exhibits a three-dimensional framework generated by an M17L6 motif. Dimensional increase in complexes 1-4 was caused by deprotonation of the H3TBimB ligand, thus offering more coordinating donors and resulting in aggregation of oligomeric Ag(I) building units. In the cases of complexes 3 and 4, TAZ or H2O molecules serve as auxiliary ligands to complete the coordination geometry of the Ag(I) ions wherever necessary. The photoluminescent properties of the ligand H3TBimB and the complexes 1-3 have been investigated.  相似文献   

13.
Four thiophene functionalized triazole ligands (L1=4-(thenyl)-1,2,4-triazole, L2=4-(thiophene ethyl)-1,2,4-triazole, L3=N-Thiophenylidene-4H-1,2,4-triazole-4-amine, and L4=(4-[(E)-2-(5-sulfothiophene)vinyl]-1,2,4-triazole) were synthesized. These ligands have different lengths and rigidities, while ligand L4 has a sulfonic acid group that can form a hydrogen bond. Five 1D FeII chain complexes were synthesized: [Fe(L1)3](X)2 ⋅ nH2O [X=BF4, n=1.5 ( C1 ); X=ClO4, n=1 ( C2 )], [Fe(L2)3](BF4)2 ⋅ 1.5H2O ( C3 ); [Fe(L3)3](X)2 ⋅ nH2O [X=BF4, n=2 ( C4 ); X=ClO4, n=2.5 ( C5 )]. The results of temperature-dependent magnetic susceptibility reveal that complexes C1 , C2 , and C3 experienced the transition between two spin states. And C4 and C5 maintain high spin states at all temperature ranges. Binuclear complex [Fe2(L3)5(SCN)4] ( C6 ) and mononuclear material [Fe(L4)2(H2O)4] ⋅ 2H2O ( C7 ), these two zero-dimensional molecules were also synthesized. They all display weak antiferromagnetic exchange coupling and a high spin state in the whole process.  相似文献   

14.
Na[AuCl(4)]·2H(2)O reacts with tridentate thiosemicarbazide ligands, H(2)L1, derived from N-[N',N'-dialkylamino(thiocarbonyl)]benzimidoyl chloride and thiosemicarbazides under formation of air-stable, green [AuCl(L1)] complexes. The organic ligands coordinate in a planar SNS coordination mode. Small amounts of gold(I) complexes of the composition [AuCl(L3)] are formed as side-products, where L3 is an S-bonded 5-diethylamino-3-phenyl-1-thiocarbamoyl-1,2,4-triazole. The formation of the triazole L3 can be explained by the oxidation of H(2)L1 to an intermediate thiatriazine L2 by Au(3+), followed by a desulfurization reaction with ring contraction. The chloro ligands in the [AuCl(L1)] complexes can readily be replaced by other monoanionic ligands such as SCN(-) or CN(-) giving [Au(SCN)(L1)] or [Au(CN)(L1)] complexes. The complexes described in this paper represent the first examples of fully characterized neutral Gold(III) thiosemicarbazone complexes. All the [AuCl(L1)] compounds present a remarkable cell growth inhibition against human MCF-7 breast cancer cells. However, systematic variation of the alkyl groups in the N(4)-position of the thiosemicarbazone building blocks as well as the replacement of the chloride by thiocyanate ligands do not considerably influence the biological activity. On the other hand, the reduction of Au(III) to Au(I) leads to a considerable decrease of the cytotoxicity.  相似文献   

15.
A series of new silver(I)-containing MOFs [Ag(2)(tr(2)ad)(2)](ClO(4))(2) (1), [Ag(2)(VO(2)F(2))(2)(tr(2)ad)(2)]·H(2)O (2), [Ag(2)(VO(2)F(2))(2)(tr(2)eth)(2)(H(2)O)(2)] (3), and [Ag(2)(VO(2)F(2))(2)(tr(2)cy)(2)]·4H(2)O (4) supported by 4-substituted bifunctional 1,2,4-triazole ligands (tr(2)ad = 1,3-bis(1,2,4-triazol-4-yl)adamantane, tr(2)eth = 1,2-bis(1,2,4-triazol-4-yl)ethane, tr(2)cy = trans-1,4-bis(1,2,4-triazol-4-yl)cyclohexane) were hydrothermally synthesized and structurally characterized. In these complexes, the triazole heterocycle as an N(1),N(2)-bridge links either two adjacent Ag-Ag or Ag-V centers at short distances forming polynuclear clusters. The crystal structure of compound 1 is based on cationic {Ag(2)(tr)(4)}(2+) fragments connected in a 2D rhombohedral grid network with (4,4) topology. The neighboring layers are tightly packed into a 3D array by means of argentophilic interactions (Ag···Ag 3.28 ?). Bridging between different metal atoms through the triazole groups assists formation of heterobimetallic Ag(I)/V(V) secondary building blocks in a linear V-Ag-Ag-V sequence that is observed in complexes 2-4. These unprecedented tetranuclear {Ag(2)(VO(2)F(2))(2)(tr)(4)} units (the intermetal Ag-Ag and Ag-V distances are 4.24-4.36 and 3.74-3.81 ?, respectively), in which vanadium(V) oxofluoride units possess distorted trigonal bipyramidal environment {VO(2)F(2)N}ˉ, are incorporated into 1D ribbon (2) or 2D square nets (3, 4) using bitopic μ(4)-triazole ligands. The valence bond calculation for vanadium atoms shows +V oxidation state in the corresponding compounds. Thermal stability and photoluminescence properties were studied for all reported coordination polymers.  相似文献   

16.
Copper(II) coordination compounds with 3-(pyridin-2-yl)-5-(2-salicylideniminophenyl)-1H-1,2,4-triazole and 1,3-bis(5-(pyridin-2-yl)-1,2,4-triazole-3-yl)propane have been synthesized. The complexes have been studied by elemental and thermal analysis, IR and electron spectroscopy, electron paramagnetic resonance (EPR), and magnetochemistry. According to X-ray diffraction data, the complexes have binuclear structures in which metal cations are bonded via the nitrogen atoms of two bridging triazole rings.  相似文献   

17.
To evaluate the possibility of introducing azole nucleosides as building blocks for metal-mediated base pairs in artificial oligonucleotides, imidazole nucleoside, 1,2,4-triazole nucleoside and tetrazole nucleoside have been synthesized and characterized. The X-ray crystal structures of p-toluoyl-protected 1,2,4-triazole and tetrazole nucleosides are reported. Contrary to the situation primarily found for deoxyribonucleosides, the sugar moieties adopt C3'-endo conformations. The acidity of the beta nucleosides increases with increasing number of nitrogen ring atoms, giving pKa values of 6.01 +/- 0.05, 1.32+/-0.05 and <-3, respectively. This decrease in basicity results in a decreasing ability to form 2:1 complexes with linearly coordinating metal ions such as Ag+ and Hg2+. In all cases, the Ag+ complexes are of higher stability than the corresponding Hg2+ complexes. Whereas imidazole nucleoside forms highly stable 2:1 complexes with both metal ions (estimated log beta2 values of >10), only Ag+ is able to reach this coordination pattern in the case of triazole nucleoside (log beta2 = 4.3 +/- 0.1). Tetrazole nucleoside does not form 2:1 complexes at all under the experimental conditions used. These data suggest that imidazole nucleoside, and to a lesser extent 1,2,4-triazole nucleoside, are likely candidates for successful incorporation as ligands in oligonucleotides based on metal-mediated base pairs. DFT calculations further corroborate this idea, providing model complexes for such base pairs with glycosidic bond distances (10.8-11.0 Angstroms) resembling those in idealized B-DNA (10.85 Angstroms).  相似文献   

18.
Wang Y  Yi L  Yang X  Ding B  Cheng P  Liao DZ  Yan SP 《Inorganic chemistry》2006,45(15):5822-5829
The self-assembly of Ag(I) ions with 3,5-dimethyl-4-amino-1,2,4-triazole (L1) and 4-salicylideneamino-1,2,4-triazole (L2) gave two novel complexes, [Ag4(mu2-L1)6][Ag4(mu2-L1)6(CH3CN)2](ClO4)8.2H2O (1) and [Ag4(mu2-L2)6(CH3CN)2](AsF6)4.2H2O (2), both of which contain tetranuclearic clusters constructed via Ag(I) ions and six N1,N2-bridged triazoles with a Ag4N12 core. When 4-(6-amino-2-pyridyl)-1,2,4-triazole (L3) was employed, {[Ag4(mu2-L3)4(mu3-L3)2](CF3SO3)4.H2O}n (3), {[Ag4(mu2-L3)4(mu3-L3)2](ClO4)4}n (4), and {[Ag4(mu2-L3)2(mu3-L3)4](PF6)4.CH3CN.0.75H2O}n (5) were isolated. 3 and 4 are 1D polymers, while 5 is a 2D polymer. 1D and 2D coordination polymers are constructed via the self-assembly of Ag4N12 cores as secondary building units (SBUs). The connection of these SBUs can be represented as a ladderlike structure for 1D polymers and a 4.8(2) net for 2D polymers. Electrospray ionization mass spectrometry measurements and NMR (1H and 13C) studies demonstrate that the tetranuclear SBU retains its integrity and the coordination polymers decompose into the tetranuclear Ag4N12 core in solution. 2 exhibits blue emission in the solid state and green emission in solution at ambient temperature. Strong blue fluorescence for complexes 3-5 in the solid state can be assigned to the intraligand fluorescent emission.  相似文献   

19.
The syntheses and spectroscopic characterization of two 1,2,4-triazole-based oxovanadium(V) complexes are reported: 1- [VO2L1]- and 2 [(VOL2)2(OMe)2] (where H2L1 = 3-(2'-hydroxyphenyl)-5-(pyridin-2' '-yl)-1H-1,2,4-triazole, H3L2 = bis-3,5-(2'-hydroxyphenyl)-1H-1,2,4-triazole). The ligand environment (N,N,O vs O,N,O) is found to have a profound influence on the properties and reactivity of the complexes formed. The presence of the triazolato ligand allows for pH tuning of the spectroscopic and electrochemical properties, as well as the interaction and stability of the complexes in the presence of hydrogen peroxide. The vanadium(IV) oxidation states were generated electrochemically and characterized by UV-vis and EPR spectroscopies. For 2, under acidic conditions, rapid exchange of the methoxide ligands with solvent [in particular, in the vanadium(IV) redox state] was observed.  相似文献   

20.
Seven new polynuclear copper(II) complexes of formula [Cu(mu-pymca)2] (1) (pymca(-) = pyrimidine-2-carboxylato), [Cu(mu-pymca)Br] (2), [Cu(mu-pymca)Cl] (3), [Cu(mu-pymca)(SCN)(H2O)] x 4 H2O (4), [Cu(mu-pymca)N3] (5), [Cu2(mu1,5-dca)2(pymca)2] (6) (dca = dicyanamide), and K{[mu-Au(CN)2]2[(Cu(NH3)2)2(mu-pymca)]}[Au(CN)2]2 (7) have been synthesized by reactions of K-pymca with copper(II) ions in the presence of different counteranions. Compound 1 is a linear neutral chain with a carboxylato bridging ligand in a syn-anti coordination mode, whereas complexes 2 and 3 consist of cationic linear chains with cis and trans bis(chelating) pymca bridging ligands. Complex 4 adopts a helical pymca-bridged chain structure. In complex 5, zigzag pymca-bridged chains are connected by double end-on azide bridging ligands to afford a unique honeycomb layer structure. Complex 6 is a centrosymmetric dinuclear system with double mu 1,5-dicyanamide bridging ligands and pymca end-cap ligands. Complex 7 is made of pymca-bridged dinuclear [Cu(NH3)2(mu-pymca)Cu(NH3)2](3+) units connected by [Au(CN)2](-) anions to four other dinuclear units, giving rise to cationic (4,4) rectangular nets, which are linked by aurophilic interactions to afford a singular 3D network. Variable-temperature magnetic susceptibility measurements show that complex 1 exhibits a very weak antiferromagnetic coupling through the syn-anti (equatorial-axial) carboxylate bridge (J = -0.57 cm(-1)), whereas complexes 2-4 and 7 exhibit weak to strong antiferromagnetic couplings through the bis(chelating) pymca bridging ligand J = -17.5-276.1 cm(-1)). Quantum Monte Carlo methods have been used to analyze the experimental magnetic data for 5, leading to an antiferromagnetic coupling (J = -34 cm(-1)) through the pymca ligand and to a ferromagnetic coupling (J = 71 cm(-1)) through the azide bridging ligands. Complex 6 exhibits a very weak antiferromagnetic coupling through the dicyanamide bridging ligands (J = -5.1 cm(-1)). The magnitudes of the magnetic couplings in complexes 2-5 have been explained on the basis of the overlapping between magnetic orbitals and DFT theoretical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号