首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Conclusions In the reaction of CCl3CH3 with CCl2=CHCH2CH2CH2Cl, and of CCl3CH2CH2Cl with CCl2= CHCH2Cl, initiated by Fe(CO)5+DMF, the main addition products are respectively compounds of structure HCCl2CH(CCl2CH3)CH2CH2CHCl2 and HCCl2CH(CCl2CH2CHCl2)CH2C1. The formation of these compounds was explained by the isomeriza'tion of the radical-adducts CCl2CH(CCl2CH3)CH2CH2CH2Cl and CCl2CH(CCl2CH2CH2Cl)CH2Cl, with migration of a hydrogen atom from the CH2Cl groups found in the 5 position to the radical center.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 8, pp. 1857–1861, August, 1980.  相似文献   

2.
The BEBO method was used to calculate the kinetic isotope effect for formyl-hydrogen abstraction from acetaldehyde by methyl radicals. The calculated isotope effect and experimental ratios of the rate constants obtained at 785°K for the reactions of CH3 with CH3CHO and CH3CDO, together with the theoretical temperature dependence of the specific rates (as formulated by the BEBO theory), were used to obtain rate constants for the steps CH3 + CH3CHO → CH4 + CH3CO (2a), CH3 + CH3CHO → CH4 + CH2CHO (2b), and CH3 + CH3CDO → CH3D + CH3CO (1a) between 298 and 1224°K. It was shown that the curvature apparent in the Arrhenius plot of the rate coefficient k2 reported for the reaction of methyl radicals with acetaldehyde in the temperature range of 298–1224°K is caused both by the simultaneous contribution of steps (2a) and (2b) to methane formation, and by the curvature in the Arrhenius plots of the two elementary rate constants themselves. The predicted curve agrees well with the experimental data, especially if the tunneling correction is applied.  相似文献   

3.
The mechanism of the gas-phase reaction OH with CH2=C(CH3)CH2OH (2-methyl-2-propen-1-ol) has been elucidated using high-level ab initio method, i.e., CCSD(T)/6-311++g(d,p)//MP2(full)/6-311++g(d,p). Various possible H-abstraction and addition–elimination pathways are identified. The calculations indicate that the addition–elimination mechanism dominates the OH+MPO221 reaction. The addition reactions between OH radicals and CH2=C(CH3)CH2OH begin with the barrierless formation of a pre-reactive complex in the entrance channel, and subsequently the CH2(OH)C(CH3)CH2OH (IM1) and the CH2C(OH)(CH3)CH2OH (IM2) are formed by OH radicals’ electrophilic additions to the double bond. IM1 can easily rearrange to IM2 via a 1,2-OH migration. Subsequently, rearrangement of IM2 to form (CH3)2C(OH)CH2O (IM11) followed by dissociation to HCHO + (CH3)2COH (P21) is the most favorable pathway. The decomposition of IM2 to CH2OH + CH2=C(OH)CH3 (P16) is the secondary pathway. The other pathways are not expected to play any important role in forming final products.  相似文献   

4.
1,2-Eliminations are a varied and extensive set of dissociations of ions in the gas phase. To understand better such dissociations, elimination of CH2=CH2 and CH3CH3 from (CH3)2NH+CH2CH3 (1) and of CH4 from (CH3)2NH2+ are characterized by quantum chemical calculations. Stretching of the CN bond to ethyl is followed by shift of an H from methyl to the bridging position in ethyl and then to N to reach (CH3)2NH2+ + CH2=CH2 from 1. CH3CH3 elimination by H-transfer to C2H5+ to form CH3NH+=CH2 + CH3CH3 also takes place. (CH3)2NH2+ eliminates methane by CN bond extension followed by β-H-transfer to give CH2=NH+ + CH4. Low-energy reactions resembling complex-mediated 1,2-eliminations occur and constitute a hitherto largely unrecognized type of reaction. As in many complex-mediated reactions, these reactions transfer H between incipient fragments. They are distinguished from complex-mediated processes by the fragments not being able to rotate freely relative to each other near the transition state for reaction, as they do in complexes. Most 1,2-eliminations are ion-neutral complex-mediated, occur by the just described lower energy reactions, have 1,1-like transition states, or utilize highly asynchronous 1,2 transition states. All of these avoid synchronized 1,2-transition states that would violate conservation of orbital symmetry.  相似文献   

5.
Excess molar volumes at 298.15 K of the ternary system {CH3(CH2)2CO2(CH2)3CH3+ CH3(CH2)7OH+CH3(CH2)6CH3} and the binary mixtures {CH3(CH2)2CO2(CH2)3CH3+ CH3(CH2)7OH}, {CH3(CH2)2CO2(CH2)3CH3+CH3 (CH2)6CH3} and {CH3(CH2)7OH+ CH3(CH2)6CH3} were determined using an Anton Paar DMA 60/602 densimeter. All experimental values were compared with the results obtained with empirical expressions for estimation of the ternary properties from the binary data. Variable-degree polynomials were fitted to the results. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Preparation and Properties of 3-(N,N-Dimethylamino)propyl Thallium Compounds TlCl3 reacts with Me2NCH2CH2CH2Li in molar ratio 1:2 with formation of (Me2NCH2CH2CH2)2TlCl ( 1 ) which can be transfered with MeLi into (Me2NCH2CH2CH2)2TlMe ( 2 ) and with excess of Me2NCH2CH2CH2Li into (Me2NCH2CH2CH2)3Tl ( 3 ) respectively. Comproportionation of 1 with TlCl3 yields rather instable Me2NCH2CH2CH2TlCl2 ( 4 ) from which Me2NCH2CH2CH2TlMe2 ( 5 ) can be obtained by alkylation with MeLi. 1–3 and 5 were characterized by elemental analysis, mass spectra, 1H- and 13C-n.m.r. spectra.  相似文献   

7.
The lithiation of ethylenediamine by LiH is a stepwise process to form the partially lithiated intermediates LiN(H)CH2CH2NH2 and [LiN(H)CH2CH2NH2][LiN(H)CH2CH2N(H)Li]2 prior to the formation of dilithiated ethylenediamine LiN(H)CH2CH2N(H)Li. A reversible phase transformation between the partial and dilithiated species was observed. One dimensional {LinNn} ladders and three‐dimensional network structures were found in the crystal structures of LiN(H)CH2CH2NH2 and LiN(H)CH2CH2N(H)Li, respectively. LiN(H)CH2CH2N(H)Li undergoes dehydrogenation with an activation energy of 181±8 kJ mol?1, whereas the partially lithiated ethylenediamine compounds were polymerized and released ammonia at elevated temperatures. The dynamical dehydrogenation mechanism of the dilithiated ethylenediamine compounds was investigated by using the Johnson‐Mehl‐Avrami equation.  相似文献   

8.
The C4H10O.+ potential energy surface was accessed at several energies through different ion/molecule reactions. Reaction of CH3CH.+3 with CH3CHO and CH3CHO.+ with CH3CH3 gave predominantly CH3CHOH+ +. CH2CH3 and small amounts of CH3CH2CHOH+ +. CH3. CH3CH.+3 also produced a small amount of CH3CHO+CH3 +. CH3 upon reaction with CH3CHO. CH2 = CHOH. + did not react with CH3CH3. CH3CH2OH. + reacted CH2 = CH2 and CH2 = CH.+2 with CH3CH2OH to produce CH3CH2OH+2 and CH3CHOH+, but only the second pair of reactants produced detectable C3H7O+ ions. CH3CH2CHO.++CH4 produced only CH3CH2CHOH+. In all of the reactions examined, initial proton or H-transfer was much more often followed by simple dissociation than by CC bond formation or multiple H-transfers. This contrasts with the metastable decompositions of ionized 2-butanol, in which elimination of ethane and methane through the complexes [CH3CHOH+.CH2CH3] and [CH3CH2CHOH+.CH3] are important processes. This contrast is attributed to the ion/molecule reactions taking place in a higher energy regime than the metastable decompositions.  相似文献   

9.
Substitution Reactions with Sulphur Diimides Substituted sulphur diimides are obtained by the reactions of (CH3)3Si? N?S?N? Si(CH3)3 with CH3SO2Cl and CCl3SCl or with P2O3F4 and (CH3)3Si? N?S?N? SN(CH3)2. S4N4 reacts with (CH3)2Si[N(CH3)2]2 to from (CH3)2Si(N(CH3)2)? N?S?N? SN(CH3)2 while S3N2Cl2 yields (CH3)2Si(Cl)? N?S?N? SN(CH3)2. It is possible to substitute the chlorine atom by diethylamine in the last compound. The new compounds are intermediates for the syntheses of cyclic sulphur-nitrogen compounds. They were characterized by mass-, ir-, 1H-nmr spectra and elemental analysis.  相似文献   

10.
A series of bis(trifluoromethyl)carbinyl acrylate monomers [Y-C(CF3)2 O? CO? CH?CH2] in which Y is CH3, CH3CH2, CH3CH2CH2, CH3CH2CH2CH2, C6H5, H, F, CF3, N3, CN, and CH3OCH2CH2O, was prepared. Polymers were easily prepared from all of these monomers except where Y = CN, wherein a variety of initiation methods failed to produce high molecular polymer. Wettabilities of the polymer films were examined by means of contact angle measurements by using n-alkane test liquids and water. Values of the dispersion force contribution (γsd) and the polar force contribution (γsp) to the solid surface energy were calculated by employing both geometric and harmonic mean approximations. Values of γsd calculated by either method agreed well with γc (critical surface tension) values determined graphically from contact angle data employing n-alkane test liquids, confirming the suggestion that γc is an approximate measure of the dispersion force contribution to solid surface energy. Values of γsd ranged from 15 dyne/cm (Y = F or CF3) to 25 dyne/cm (Y = C6H5). Values of the polar force contribution to solid surface energy (γsp) varied from 0.6 dyne/cm (Y = CH3CH2CH2CH2) to 3.4 dyne/cm (Y = CH3OCH2CH2O) when calculated by the geometric mean equation. The values of γsp obtained from the harmonic mean equation followed the same trend upon varying substituents, but were larger in value, ranging from 2.9 dyne/cm (Y = CH3CH2CH2CH2) to 7.5 dyne/cm (Y γ CH3OCH2CH2O).  相似文献   

11.
Ten fluoromonomers of structure (RFO)2P(O)OCH2CH2OC(O)CRCH2 were made in 30-64% yield by treating the chloridates (RFO)2P(O)Cl with HOCH2CH2OC(O)CRCH2 in chloroform in the presence of triethylamine [RF=CF3CH2, C2F5CH2, C3F7CH2, C4F9CH2, C4F9CH2CH2 or C6F13CH2CH2; R  H or Me]. The chloromonomer (CCl3CH2O)2P(O)OCH2CH2OC(O)CHCH2 was obtained analogously in 29% yield. Polymerisation of the acrylate monomers, but not the methacrylate monomers, could be effected using α-azoisobutyronitrile as a radical initiator. Acrylic polymers having CF3CH2O, CCl3CH2O and C6F13CH2CH2O side-chains were obtained as translucent rubbers. Specimens of cotton fabric were treated with solutions of the polymers, and average water and oil repellency ratings measured. Fabric coated with the polymer with the C6F13CH2CH2O side-chain afforded protection from penetration of the test liquids. Treated fabrics were subjected to the limiting oxygen index (LOI) test according to BS EN ISO 4589-2 (1999): this test determines the point at which a material just burns in a volumetric flow of oxygen and nitrogen. The treated fabrics were more fire-resistant (LOI 22-29%) than the untreated fabric (LOI 18%). Fabric coated with the CCl3CH2O-based polymer can be considered fire-retardant (LOI 29%). The fluoromonomers were tested for anti-acetylcholinesterase activity and were found to be poor enzyme inhibitors; they are predicted to possess low acute toxicity.  相似文献   

12.
Various cyclic phosphonium structures are formed in high yield by the deprotection of unstable phosphine-aldehydes in acidic solution. When there is a methylene spacer between the phosphine and the aldehyde, a phosphonium ion [PHR2CH2CH(OEt)2]Br2, R=iPrOH, Et is obtained. Reaction of these phosphonium salts with water produces the dimers [-PR2CH2CH(OH)-]2[Br]2 R = iPr, Et. When there is an ethylene spacer as in PPh2CH2CH2CH(OCH2CH2O), a remarkable tetramer with a 16-membered ring [-PPh2CH2CH2CH (OH)-]4[Cl]4 forms as one diastereomer in hydrochloric acid solution. Reaction of HCl with the protected phosphine-aldehyde with a propylene spacer (PPh2CH2CH2CH2CH(OCH2CH2O)) results in the formation of the monomeric phosphonium salt [-PPh2 CH2CH2CH2CH(OH)-]Cl with a 5-membered ring. Solid state structures of different ring types were determined using X-ray diffraction experiment.  相似文献   

13.
(CpCH_2CH_2CH = CH_2)_2MCl_2(M=Zr, Hf)/MAO and Cp_2ZrCl_2/MAO (Cp=cyclopentadienyl; MAO=methylaluminoxane) catalyst systems have been compared for ethylene copolymerization to investigate the influence of theligand and transition metal on the polymerization activity and copolymer properties. For both CH_2CH_2CH=CH_2 substitutedcatalysts the catalytic activity decreased with increasing propene concentration in the feed. The activity of the hafnocenecatalyst was 6~8 times lower than that of the analogous zirconocene catalyst, ~(13)C NMR analysis showed that the copolymerobtained using the unsubstituted catalyst Cp_2ZrCl_2 has greater incorporatien of propene than those produced byCH_2CH_2CH=CH_2 substituted Zr and Hf catalysts. The melting point, crystallinity and the viscosity-average molecularweight of the copolymer decreased with an increase of propenc concentration in the feed. Both CH_2CH_2CH= CH_2 substitutedZr and Hf catalysts exhibit little or no difference in the melting point and crystallinity of the produced copolymers. However,there are significant differences between the two zirconocene catalysts. The copolymer produced by Cp_2ZrCl_2 catalyst havemuch lower T_m and X_c than those obtained with the (CpCH_2CH_2CH=CH_2)_2ZrCl_2 catalyst. The density and molecular weightof the copolymer decreased in the order: (CpCH_2CH_2CH=CH_2)_2HfCl_2>(CpCH_2CH_2CH=CH_2)_2ZrCl_2>Cp_2ZrCl_2. The kineticbehavior of copolymerizaton with Hf catalyst was found to be different from that with Zr catalyst.  相似文献   

14.
High-resolution ESR. spectra of the radicals CH2COOR, CH3CHCOOR and (CH3)2CCOOR with R?CH3, CH2CH3, CH(CH3)2 and C(CH3)3 in liquid solution confirm planar energy-minimum structures with substantial barriers to internal rotation about the ?, CO-bonds (?40 kJ/mol) and partial π-electron delocalization. The assignments of coupling constants to protons in isomeric positions and the conclusions on radical structures are supported by INDO-calculations.  相似文献   

15.
The reactions of the methylhalogenodimethylaminoarsines CH3As-[N(CH3)2]X (X  F, Cl, Br, I) with HY (Y = Cl, Br) yield the methyldihalogenoarsines CH3AsXY. The compounds CH3As[N(CH3)2]X are prepared by the reactions of CH3AsCl2 with HN(CH3)2, CH3As[N(CH3)2]2 with HX (X = Cl, Br) and by exchange reactions between CH3As[N(CH3)2]2 and CH3AsX2 (X = F, Cl, Br, I).  相似文献   

16.
The tin-containing sulfide Me3Sn(CH2)3-S-C6H5CH3-4 obtained by photoaddition of 4-toluene- thiol to allyltrimethyltin was oxidized with hydrogen peroxide to synthesize the tin-containing sulfone Me3Sn(CH2)3-SO2-C6H4CH3-4, the tin and sulfur atoms in which are separated by a trimethylene bribge. Treatment of the sulfone with butyllithium gave a first tin-containing lithium salt having a red-brown color. The exchange reaction of this salt with methyl iodide resulted in formation of two new isomeric tin-containing sulfones Me3SnCH2CH2CH(CH3)-SO2-C6H4CH3 and Me3Sn(CH2)3-SO2-C6H4CH2CH3 identified by 1HNMR spectroscopy. The latter result implies that the tin-containing sulfone is lithiated both by the methylene group adjacent to the sulfonyl group and by the toluene methyl group.  相似文献   

17.
The reactions of ionized di-n-butyl ether are reported and compared with those of ionized n-butyl sec-butyl and di-sec-butyl ether. The main fragmentation of metastable (CH3CH2CH2CH2)2O+. is C2H5? loss (?85%), but minor amounts (2–4%) of CH3?, C4H7?, C4H9?, C4H10 and C4H10O are also eliminated. In contrast, C2H5? elimination is of much lower abundance (20 and 4%, respectively) from metastable CH3CH2CH2CH2OCH(CH3)CH2CH3+. and [CH3CH2(CH3)CH]2O+., which expel mainly C2H6 and CH3? (35–55%). Studies on collisional activation spectra of the C6H13O+ oxonium ions reveal that C2H5? loss from (CH3CH2CH2CH2)2O+. gives the same product, (CH3CH2CH2CH2 +O?CHCH3) as that formed by direct cleavage of CH3CH2CH2CH2OCH(CH3)CH2CH3+.. Elimination of C2H5? from (CH3CH2CH2CH2)2O+. is interpreted by means of a mechanism in which a 1,4-H shift to the oxygen atom initiates a unidirectional skeletal rearrangement to CH3CH2CH2CH2OCH(CH3)CH2CH3+., which then undergoes cleavage to CH3CH2CH2CH2+O?CHCH3 and C2H5?. Further support for this mechanism is obtained from considering the collisional activation and neutralization-reionization mass spectra of the (C4H9)2O+. species and the behaviour of labelled analogues of (CH3CH2CH2CH2)2O+.. The rate of ethyl radical loss is suppressed relative to those of alternative dissociations by deuteriation at the γ-position of either or both butyl substituents. Moreover, C2H5? loss via skeletal rearrangement and fragmentation of the unlabelled butyl group in CH3CH2CH2CH2OCH2CH2CD2CH3+. occurs approximately five times more rapidly than C2H4D? expulsion via isomerization and fission of the labelled butyl substituent. These findings indicate that the initial 1,4-hydrogen shift is influenced by a significant isotope effect, as would be expected if this step is rate limiting in ethyl radical loss.  相似文献   

18.
The reaction mechanism of the halogen (Cl and Br)-atom initiated oxidation of C2H4 was studied using the long path FTIR spectroscopic method in 700 torr of air at 296 ± 2 K. Among the major halogen-containing products were X? CH2CHO, X? CH2CH2OH, and X? CH2CH2OOH (X = Cl or Br) which were shown to be formed via the self-reaction of the X? CH2CH2OO radicals, i.e., 2X? CH2CH2OO → 2X? CH2CH2O + O2; (a) 2X? CH2CH2OO → X? CH2CHO + X? CH2CH2OH + O2 and (b) followed by X? CH2CH2O + O2 → X? CH2CHO + HO2 and X? CH2CH2OO + HO2 → X? CH2CH2OOH + O2. From the observed yields of X? CH2CHO and X? CH2CH2OH the branching ratios for reactions (a) and (b) were determined to be ka/kb = 1.35 ± 0.07(2σ) for both X = Cl and Br. In addition, the O2-dependence of the rate constant for the Br + C2H4 reaction was determined by the relative rate technique as a function of O2 partial pressure from 140 to 700 torr at 700 torr total pressure of N2/O2 diluent. Rate constants for the reactions of Cl-atoms with Cl-CH2CHO and Br-atoms with Br-CH2CHO were also determined to be [4.3 ± 0.2(2sigma;)] × 10?11 and less than or equal to [1.83 ± 0.11(2σ)] × 10?13 cm3 molecule?1 s?1, respectively.  相似文献   

19.
Abstract

This study focusses on the preparation of ifosfamide (1; R1=CH2CH2Cl, R2=NHCH2CH2Cl) and cyclophosphamide (2 R1=H, R2=N(CH2CH2Cl)2), standard drugs in tumor therapy, in order to avoid the alkylating educts like 2-chloroethylamine by introducing chlorine in the final reaction step. The reaction of the trimethylsilyl compounds (3; R1=CH2CH2Cl, R2=NHCH2CH20SiMe3) and (4; R1=H, R2=N(CH2CH20SiMe3)2), respectively, with 2-chloro- 1,3,5-trimethyl-1,3,5-triaza-σ3λ3-2-phosphoM-4,6-dione, followed by chlorination of the resulting product with sulphuryl chloride, furnished the cytotoxic drugs (1) and (2) [l].  相似文献   

20.
Summary The result of the chlorination of (CH3CH2NPF3)2 and (CH3CH2CH2NPF3)2 with chlorine under UV-radiation were the new compounds CH3CH2(NPF3)2CH2CH2Cl and CH3CH2CH2(NPF3)2CH2CH2CH2Cl. The reaction of CH3(NPF3)2CH2Cl with KCN and crown-ether gave the new compound CH3(NPF3)2CH2CN.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号