首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
严重段塞流是海洋工程气液混输管线--立管系统中常见的一种特殊有害流动现象, 采用水平--下倾--悬链线立管气液混输组合管道系统, 通过系列实验在悬链线立管中获得了严重段塞流、间歇流和震荡流等流型, 阐述了这些流动现象的形成机理, 提出了能够产生严重段塞流的判定准则. 结果表明, 悬链线立管严重段塞流具有明显周期性, 在一个周期内的流动特征可分为液塞形成、液体出流、液气喷发及液体回流等4个阶段, 进而给出了各阶段中相关流动参数的变化规律. 在实验中同时还对悬链线与垂直立管中严重段塞流形成机理进行了比较分析, 发现两者在液塞形成阶段有显著差别. 其中, 在悬链线立管中液塞形成之前首先需要经历一个气液混合液塞形成过程, 而垂直立管则没有这个过程.   相似文献   

2.
The gas/liquid two-phase flow in pipeline/wavy-pipe/riser systems was investigated numerically with CFD. A CFD model of the pipeline/wavy-pipe/riser system was obtained by adding a wavy pipe to the model of the pipeline/riser system verified by the experimental data previously. The effects of the geometrical parameters and location of the wavy pipe on its performance of slug mitigation and flow characteristics in pipeline/wavy-pipe/riser systems were examined through the CFD models. With the increase of the amplitude or length of the wavy pipe, the slug in the pipeline/riser system becomes shorter. The optimum location of the wavy pipe in the pipeline exists for a pipeline/riser system and a wavy pipe at given operating conditions. The CFD modelling provides a feasible and flexible way to investigate the effectiveness of the wavy pipes on mitigating severe slugging in pipeline/riser systems.  相似文献   

3.
A numerical study based on a one-dimensional two-fluid model is carried out to describe the transient hydrodynamic slugging and terrain-induced severe slugging in a pipeline–riser system. The system of equations is rendered well-posed by interfacial pressure model for the riser. The selected flow conditions are restricted in the well-posed region for the horizontal and the downward inclined pipes to ensure the hydrodynamic slug characteristics are predicted correctly. The validity of the model is examined by water faucet problem and horizontal slug flow experiments. Simulations with and without slug capturing are conducted to address the effect of hydrodynamic slugs on severe slugging. It has been found that more accurate predictions are obtained by taking hydrodynamic slugs into account. At low superficial gas velocity, the simulation without slug capturing tends to overestimate the severe slugging period. When hydrodynamic slugs are captured, the upstream gas expansion is suppressed by the hydrodynamic slugs. At relatively high superficial gas velocity, the simulation without slug capturing tends to underestimate the severe slugging period. When hydrodynamic slugs are captured, the upstream compressible volume is greatly enlarged by the blowout of the hydrodynamic slugs. In both situations, the influences of the hydrodynamic slugs can reduce the errors of the predicted severe slugging characteristics.  相似文献   

4.
Severe slugging is a dynamic two-phase flow phenomenon with regular liquid accumulation and blow-out in flow-line riser geometries. This paper discusses the applicability of a slug tracking model on a case where hydrodynamic slug initiation in a horizontal part of the pipeline upstream the riser base affects the severe slugging cycle period. The given experimental case is from the Shell laboratories in Amsterdam: air–water flow in a 100 m long pipe (65 m horizontal and 35 m −2.54° downwards) followed by a 15 m long vertical riser.A Lagrangian slug and bubble tracking model is described. A two-fluid model is applied in the bubble region and the slug region is treated as incompressible flow, with an integral momentum equation. Slug initiation from unstable stratified flow can be captured directly by solving the two-fluid model on a fine grid (a hybrid capturing and tracking scheme). Alternatively, slug initiation can be made from sub grid models, allowing for larger grid sizes. The sub grid models are based on the two established flow regime transition criteria derived from the stability of stratified flow and from the limiting solution of the unit cell slug flow model.Sensitivity studies on hydrodynamic slug initiation models on the severe slugging characteristics are presented. No hydrodynamic slug initiation (e.g. large grid size in the capturing scheme) overestimates the severe slug period compared with the experiments. Slug capturing and sub grid initiation models both give good predictions for small grid sizes (provided the detailed inlet configuration is included in the capturing case). Good predictions are also shown for larger grid sizes (factor of 50) and sub grid initiation models.The numerical tests show that correct prediction of the severe slugging cycle is sensitive to the initiation of upstream hydrodynamic slugs, but less sensitive to the local structure of the slug flow (frequencies and lengths) in the upstream region.  相似文献   

5.
Flexible risers transporting hydrocarbon liquid–gas flows may be subject to internal dynamic fluctuations of multiphase densities, velocities and pressure changes. Previous studies have mostly focused on single-phase flows in oscillating pipes or multiphase flows in static pipes whereas understanding of multiphase flow effects on oscillating pipes with variable curvatures is still lacking. The present study aims to numerically investigate fundamental planar dynamics of a long flexible catenary riser carrying slug liquid–gas flows and to analyse the mechanical effects of slug flow characteristics including the slug unit length, translational velocity and fluctuation frequencies leading to resonances. A two-dimensional continuum model, describing the coupled horizontal and vertical motions of an inclined flexible/extensible curved riser subject to the space–time varying fluid weights, flow centrifugal momenta and Coriolis effects, is presented. Steady slug flows are considered and modelled by accounting for the mass–momentum balances of liquid–gas phases within an idealized slug unit cell comprising the slug liquid (containing small gas bubbles) and elongated gas bubble (interfacing with the liquid film) parts. A nonlinear hydrodynamic film profile is described, depending on the pipe diameter, inclination, liquid–gas phase properties, superficial velocities and empirical correlations. These enable the approximation of phase fractions, local velocities and pressure variations which are employed as the time-varying, distributed parameters leading to the slug flow-induced vibration (SIV) of catenary riser. Several key SIV features are numerically investigated, highlighting the slug flow-induced transient drifts due to the travelling masses, amplified mean displacements due to the combined slug weights and flow momenta, extensibility or tension changes due to a reconfiguration of pipe equilibrium, oscillation amplitudes and resonant frequencies. Single- and multi-modal patterns of riser dynamic profiles are determined, enabling the evaluation of associated bending/axial stresses. Parametric studies reveal the individual effect of the slug unit length and the translational velocity on SIV response regardless of the slug characteristic frequency being a function of these two parameters. This key observation is practically useful for the identification of critical maximum response.  相似文献   

6.
A mathematical model, numerical simulations and stability and flow regime maps corresponding to severe slugging in pipeline–riser systems, are presented. In the simulations air and water were used as flowing fluids. The mathematical model considers continuity equations for liquid and gas phases, with a simplified momentum equation for the mixture, neglecting inertia. A drift-flux model, evaluated for the local conditions in the riser, is used as a closure law. The developed model predicts the location of the liquid accumulation front in the pipeline and the liquid level in the riser, so it is possible to determine which type of severe slugging occurs in the system. The numerical procedure is convergent for different nodalizations. A comparison is made with experimental results corresponding to a catenary riser, showing very good results for slugging cycle and stability and flow regime maps.  相似文献   

7.
The upstream offshore multi-phase well-pipeline-riser installations are facing huge challenges related to slugging flow: An unstable flow regime where the flow rates, pressures and temperatures oscillate in the multi-phase pipelines. One typical severe slug is induced by vertical wells or risers causing the pressure to build up and hence originates the oscillating pressure and flow. There exist many negative consequences related to the severe slugging flow and thus lots of investments and effort have been put into reducing or completely eliminating the severe slug. This paper reviews in details the state-of-the-art related to analysis, detection, dynamical modeling and elimination of the slug within the offshore oil & gas Exploration and Production (E&P) processes. Modeling of slugging flow has been used to investigate the slug characteristics and for design of anti-slug control as well, however most models require specific facility and operating data which, unfortunately, often is not available from most offshore installations. Anti-slug control have been investigated for several decades in oil & gas industry, but many of these existing methods suffer the consequent risk of simultaneously reducing the oil & gas production. This paper concludes that slug is a well defined phenomenon, but even though it has been investigated for several decades the current anti-slug control methods still have problems related to robustness. It is predicted that slug-induced challenges will be even more severe as a consequence of the longer vertical risers caused by deep-water E&P in the future.  相似文献   

8.
One of the flow regimes occurring in horizontal two-phase flows is characterized by periodic large waves “surging” along the tube. This flow, called “slug” flow, has been frequently observed in low and high pressure gas liquid systems, but it has been noticed that slugging is absent in certain liquid-liquid two-phase systems. A method is developed giving the necessary conditions for the presence of slug flow. This method quantitatively explains the observed absence of slugging in certain liquid-liquid flows.  相似文献   

9.
To clarify the impacts of the hydrodynamic boundary layer and the diffusion boundary layer in the near wall zone on gas–liquid two-phase flow induced corrosion in pipelines, the hydrodynamic characteristics of fully developed gas–liquid slug flow in an upward tube are investigated with limiting diffusion current probes, conductivity probes and digital high-speed video system. The Taylor bubble and the falling liquid film characteristics are studied, the effects of various factors are examined, and the experimental results are compared with the data and models available in literature. The length of Taylor bubble, the local void fraction of the slug unit and the liquid slug, the shear stress and mass transfer coefficient in the near wall zone, are all increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity, whereas the length of liquid slug and the liquid slug frequency are changed contrarily. The alternate wall shear stress due to upward gas–liquid slug flow is considered to be one of the major causes for the corrosion production film fatigue cracking. A normalized formula for mass transfer coefficient is obtained based on the experimental data.  相似文献   

10.
Pipelines conveying a multiphase mixture must withstand the cyclic induced stresses that occur due to the alternating motion of gas pockets and liquid slugs. Few previous studies have considered gas–liquid slug flow and the associated fluid–structure interaction problems. In this study, experimental and numerical techniques were adopted to simulate and analyze the two-phase slug flow and the associated stresses in the pipe structure. In the numerical simulation, a one-way coupled fluid–structure framework was developed to explore the slug flow interaction with a horizontal pipe assembly under various superficial gas and liquid velocities. A modified Volume of Fluid and finite element methods were utilized to model the fluid and structure domains. The file-based coupling technique was adopted to execute the coupling mechanism. By contrast, slug characteristics were measured experimentally, while Bi-axial strain gauges were used to capture time-varying strain signals. Excellent agreements between the predicted and measured stress results were achieved with a maximum error of 10.2 %. It was found that at constant superficial liquid velocity, the maximum induced stresses on the pipe wall increased with increasing the slug length and slug velocity. While for the slug frequency, the maximum principal stresses decreased with increasing the slug frequency.  相似文献   

11.
Types of choking in vertical pneumatic systems   总被引:4,自引:0,他引:4  
Choking is examined in terms of its definitions. Three choking initiation mechanisms are identified: type A (accumulative) choking occurs when solids start to accumulate at the bottom of the conveyor as the saturation gas carrying capacity is reached; type B (blower-/standpipe-induced) choking results from instabilities due to gas blower-conveyor or solids feeder-conveyor interactions where there is insufficient pressure or too limited solids feed capacity to provide the needed solids flow; and type C (classical) choking corresponds to a transition to severe slugging. Approaches for predicting the onset of each of these type of choking are recommended. Implications for regime transitions in fast fluidization are also identified.  相似文献   

12.
This paper examines the effects of wave interaction on the formation of hydrodynamic slugs in two-phase pipe flow at relatively low gas and liquid superficial velocities. The experiments were conducted using a horizontal 31 m long, D = 10 cm internal diameter transparent pipe at atmospheric pressure. High resolution photography allowed the location of the gas–liquid interface to be measured with a high degree of accuracy at 5 Hz. Image analysis allowed individual waves to be tracked over a 14D section of the pipe. Regular waves having similar properties such as speed, amplitude and length were seen far from the region of slug formation. However, near the transition region, where hydrodynamic slugs were formed, significant differences between wave properties were observed which resulted in wave interaction leading to a type of sub-harmonic resonance and slug formation. The formation of hydrodynamic slugs due to wave interaction differs from predictions for slug formation using long wavelength stability theory. The properties of the waves were quantified which gave detailed information on the resonance mechanism found near the transition to slugging.  相似文献   

13.
Gas–liquid slug flow occurs over a wide range of phase flow rates and in a variety of practical applications during gas–liquid two-phase flows. The range of slug flow increases further in narrow pipes (<0.0254 m), undulated pipelines, riser tube, etc. On the other hand, the past literature shows that slug flow is rarely observed for liquid–liquid cases. In the present study, an interest was felt to investigate whether liquid–liquid slug flow occurs in situations known for excessive slugging in gas–liquid cases. For this, experiments have been performed in narrow (0.012 m ID) vertical and horizontal pipes and an undulated pipeline of 0.0254 m internal diameter where the V-shaped undulation comprises of an uphill and a downhill section between two horizontal pipes. The studies have been performed for both peak and valley orientation of the undulation. Kerosene and water have been selected as the test fluids and the optical probe technique has been used to supplement visual observations especially at higher flow rates. The studies have revealed the existence of the slug flow pattern over a wide range of phase flow rates in all the three geometries. Interestingly, it has been noted that the introduction of an undulation induces flow patterns which bear a closer resemblance to gas–liquid flows as compared to liquid–liquid flows through a horizontal pipe of 0.0254 m diameter.  相似文献   

14.
A physical model for the prediction of gas holdup in liquid slugs in horizontal and vertical two phase pipe slug flow is presented. This model can also be used to yield the transition between elonganted bubbles and slug flow within the intermittent flow pattern. In addition a previously published model for predicting the stable slug length in vertical upward slug flow (Taitel et al. 1980) is extended here for the case of horizontal slug flow.  相似文献   

15.
Slugging represents one of the major regimes in fluidization, which occurs in small diameter beds with large bed height-to-diameter ratio or in large diameter beds with internals that resemble multiple small diameter fluidized beds. Slug types include round-nosed slug, wall slug and square-nosed slug. Studies of the slugs have been mainly focused on round-nosed or wall slugs known as half slug, typically occurring in Geldart group A particle fluidization. The square-nosed slug typically occurring for Geldart group D particles appears to be regarded as simple in its structure. The Electrical Capacitance Volume Tomography (ECVT) imaging of the square-nosed slugging phenomena conducted in this study reveals otherwise. That is the structure of the square-nosed slug is, in fact, complex, particularly with respect to its dynamic variation in fluidization. More broadly, this study examines experimentally the hydrodynamic characteristics of the square-nosed fluidization regime. Specifically, simultaneous measurements from multiple ECVT sensors provide non-invasive, continuous, 3-dimensional imaging of the entire flow region of the slugging bed and hence enabling the dynamic characterization of the evolution of the slugs. The analysis of the 3D images reconstructed for real-time gas–solid volume fraction profile of the slugging fluidized bed indicates that there are three different zones, namely, the bottom fluidization zone, the gas slug zone, and the solid slug zone, co-existing in the bed. The three zones present different hydrodynamic characteristics during the slug evolution. It is found that varying the gas velocity of the slugging bed mainly varies the maximum length of the gas slug zone, while it only has a minor effect on the lengths of the bottom fluidization zone and solid slug zone. It also has an insignificant effect on the solid volume fraction of the three zones.  相似文献   

16.
This work studies gas–solid slugging fluidized beds with Type-D particles, using two-dimensional simulations based on discrete element model (DEM). DEM performance is quantitatively validated by two commonly accepted correlations for determining slugging behavior. The voidage profiles simulated with bed height corresponding to Baeyens and Geldart (1974) correlation for onset of slugging demonstrate a transitional flow pattern from free bubbling to slugging. The present calculated values for the maximum slugging bed height are in good agreement with the correlation from Matsen et al. (1969). Simulations show that fluidized beds with Type-D particles can operate in the round-nosed slugging regime and also shows that wall slugs and square-nosed slugs tend to be formed with increase in superficial gas velocity and in bed height, respectively.  相似文献   

17.
In this work, we present a numerical study to investigate the hydrodynamic characteristics of slug flow and the mechanism of slug flow induced CO2 corrosion with and without dispersed small bubbles. The simulations are performed using the coupled model put forward by the authors in previous paper, which can deal with the multiphase flow with the gas–liquid interfaces of different length scales. A quasi slug flow, where two hypotheses are imposed, is built to approximate real slug flow. In the region ahead of the Taylor bubble and the liquid film region, the presence of dispersed small bubbles has less impacts on velocity field, because there are no non-regular intensive disturbance forces or centrifugal forces breaking the balance of the liquid and the dispersed small bubbles. In the liquid slug region, the strong centrifugal forces generated by the recirculation below the Taylor bubble lead to the effect of heterogeneity, which makes the profile of the radial liquid velocity component sharper with higher volume fraction of dispersed small bubbles. The volume fraction has a maximum value in the range of r/R = 0.5–0.6. Meanwhile, it is usually higher than 0.35, which means that larger dispersed bubbles can be formed by coalescences in this region. These calculated results are in good agreement with experimental results. The wall shear stress and the mass transfer coefficient with dispersed small bubbles are higher than those without dispersed small bubbles due to enhanced fluctuations. For short Taylor bubble length, the average mass transfer coefficient is increased when the gas or liquid superficial velocity is increased. However, there may be an inflection point at low mixture superficial velocities. For the slug with dispersed small bubbles, the product scales still cannot be damaged directly despite higher wall shear stress. In fact, the alternate wall shear stress and the pressure fluctuations perpendicular to the pipe wall with high frequency are the main cause for breaking the product scales.  相似文献   

18.
The flow boiling patterns of liquid nitrogen in a vertical mini-tube with an inner diameter of 1.931 mm are visualized with a high-speed digital camera. The superficial gas and liquid velocities are in the ranges of 0.01–26.5 m/s and 0.01–1.2 m/s, respectively. Four typical flow patterns, namely, bubbly, slug, churn and annular flow are observed. Some interesting scenes about the entrainment and liquid droplet deposition in the churn and annular flow, and the flow reversal with the indication of negative pressure drop, are also presented. Based on the visualization, the two-phase flow regime maps are obtained. Compared with the flow regime maps for gas–water flow in tubes with similar hydraulic diameters, the region of slug flow in the present study reduces significantly. Correspondingly, the transition boundary from the bubbly flow to slug flow shifts to higher superficial gas velocity, and that of churn to annular flow moves to lower superficial gas velocity. Moreover, time-averaged void fraction is calculated by quantitative image-digitizing technique and compared with various prediction models. Finally, three kinds of oscillations with long-period and large-amplitude are found, possible explanation for the oscillations is given by comparing the instantaneous flow images with the data of pressure, mass flux and temperature recorded synchronously.  相似文献   

19.
We present an analysis of the geometry of the continuous and disperse phases in the bubble and slug flow regimes in air–water mixtures generated in a capillary T-junction of 1  mm internal diameter. Bubble size dispersion is very low in the considered flow patterns. The concept of unit cell is used to identify two characteristic lengths of the two-phase flow, namely, the unit cell length and the bubble length. The relationship between these lengths and the gas and liquid superficial velocities, gas mean velocity, bubble generation frequency and volume average void fraction is analysed. We conclude that in the considered configuration the unit cell and bubble lengths can be predicted either by the ratio of the gas–liquid superficial velocities or the volume average void fraction.  相似文献   

20.
The objective of this study is to improve the current phenomenological understanding of slug flow characteristics over an entire hilly-terrain section, and in particular, the slug initiation mechanism at the lower dip.The experimental part of this study revealed that five possible flow behavior categories exist along a hilly-terrain section. In these categories, the flow behavior at the dip is coupled with flow conditions of the upstream downhill section. This qualitative classification was superimposed on steady-state flow pattern maps for the upstream downhill section in an attempt to relate the qualitative flow behavior at a dip to the flow pattern maps through the flow behavior in the downhill section.Statistical analyses of mean slug length, maximum slug length, slug frequency, and slug length variation across the hilly-terrain pipeline revealed that slug length distribution characteristics change across a symmetrical hilly-terrain pipeline. Physical modeling of the slug initiation mechanism and the characteristics of initiated slugs at the lower dip indicated two main mechanisms, namely, wave growth and wave coalescence initiation mechanisms. The initiated “pseudo slugs” or slug characteristics of each mechanism differ significantly with respect to frequency, length, liquid holdup and velocity. It was observed that pseudo slugs initiated by the wave coalescence mechanism have velocities less than the mixture velocity due to gas blowing through the slug body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号