首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Ruthenium complexes with dipyridophenazine (dppz) type ligands have several characteristics that make them good candidates for use as luminescence probes for hydrophobic environments. Most studies have concerned DNA intercalation, but also lipid membrane fluidity and liposome orientation have been assessed. We report here dipyridophenazine derivatives ([Ru(phen)2dppz]2+) substituted with one or two alkyl ether chains of different lengths aimed at finding the optimum substitution for a high quantum yield when bound to a phospholipid membrane bilayer. The orientation of membrane bound molecules is studied using flow linear dichroism (LD) with phospholipid vesicles as membrane models. LD, excitation anisotropy, steady state luminescence and excited-state lifetime measurements are used to quantitatively investigate the insertion and orientation of the complexes in the vesicles. All complexes are inserted with their long axis of the dppz moiety mainly parallel to the lipid chains, and the degree of orientation is comparable to that of the orientation probe retinoic acid. The ruthenium "head group" with its positive charge functions as a buoy at the water-membrane interface while the hydrophobic chain part embeds the complex down into the bilayer. The complex with two hexyl ether substituents (named D6) has the optimal chain length regarding membrane insertion and orientation, and together with the highest quantum yield, is the best luminescence membrane probe in the two series.  相似文献   

2.
Ruthenium (II) complex-containing polymers were prepared and characterized by absorption and luminescence spectra, luminescence quantum yield, and luminescence lifetime. The polymers are Ru(bpy)2(poly-6-vinyl-2,′2-bipyridine)CI2 ( 1 ) and Ru(bpy)2(poly-4-methyl-4′-methyl-4′ -vinyl-2,2′-bipyridine)CI2 ( 2 ). The absorption spectra and luminescence spectra of polymers 1 and 2 were substantially the same as that of Ru(bpy)3CI2. The lifetime of polymers 1 and 2 was similar to that of the respective monomer model compounds. The lifetime of polymer 1 was very short (ca. 13 ns) in comparison to Ru(bpy)3CI2 (660 ns), whereas the lifetime of polymer 2 (660 ns) was similar to that of Ru(bpy)3CI2. The temperature-dependency of the lifetime was discussed in terms of Watts' model.  相似文献   

3.
Interaction of 3-acetyl-4-oxo-6,7-dihydro-12H indolo-[2,3-a] quinolizine (AODIQ), a biologically active molecule, with model transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA) have been studied using steady state and picosecond time-resolved fluorescence and fluorescence anisotropy. The polarity dependent intramolecular charge transfer (ICT) process is responsible for the remarkable sensitivity of this biological fluorophore to the protein environments. The CT fluorescence exhibits appreciable hypsochromic shift along with an enhancement in the fluorescence yield, fluorescence anisotropy (r) and fluorescence lifetime upon binding with the proteins. The reduction in the rate of ICT within the hydrophobic interior of albumins leads to an increase in the fluorescence yield and lifetime. Marked increase in the fluorescence anisotropy indicates that the probe molecule is located in a motionally constrained environment within the proteins. Micropolarities in the two proteinous environments have been determined following the polarity sensitivity of the CT emission. Addition of urea to the protein-bound systems leads to a reduction in the fluorescence anisotropy indicating the denaturation of the proteins. Polarity measurements and fluorescence resonance energy transfer (FRET) studies throw light in assessing the location of the fluorophore within the two proteinous media.  相似文献   

4.
Abstract We have labeled rabbit skeletal muscle actin with the triplet probe erythrosin-5-iodoacetamide and characterized the labeled protein. Labeling decreased the critical concentration and lowered the intrinsic viscosity of F-actin filaments; labeled filaments were motile in an in vitro motility assay but were less effective than unlabeled F-actin in activating myosin S1 ATPase activity. In unpolymerized globular actin (G-actin), both the prompt and delayed luminescence were red-shifted from the spectra of the free dye in solution and the fluorescence anisotropy of the label was high (0.356); filament formation red shifted all excitation and emission spectra and increased the fluorescence anisotropy to 0.370. The erythrosin phosphorescence decay was at least biexponential in G-actin with an average lifetime of 99 μs while in F-actin the decay was approximately monoexponential with a lifetime of 278 μs. These results suggest that the erythrosin dye was bound at the interface between two actin monomers along the two-start helix. The steady-state phosphorescence anisotropy of F-actin was 0.087 at 20°C and the anisotropy increased to ≈0.16 in immobilized filaments. The phosphorescence anisotropy was also sensitive to binding the physiological ligands phalloidin, cytochalasin B and tropomyosin. This study lays a firm foundation for the use of this triplet probe to study the large-scale molecular dynamics of F-actin.  相似文献   

5.
A new dual luminescent sensitive paint for barometric pressure and temperature (T) is presented. The green‐emitting iridium(III) complex [Ir(ppy)2(carbac)] (ppy=2‐phenylpyridine; carbac=1‐(9H‐carbazol‐9‐yl)‐5,5‐dimethylhexane‐2,4‐dione) was applied as a novel probe for T along with the red‐emitting complex [Ir(btpy)3], (btpy=2‐(benzo[b]thiophene‐2‐yl)pyridine) which functions as a barometric (in fact oxygen‐sensitive) probe. Both iridium complexes were dissolved in different polymer materials to achieve optimal responses. The probe [Ir(ppy)2(carbac)] was dispersed in gas‐blocking poly(acrylonitrile) microparticles in order to suppress any quenching of its luminescence by oxygen. The barometric probe [Ir(btpy)3], in turn, was incorporated in a cellulose acetate butyrate film which exhibits good permeability for oxygen. The effects of temperature on the response of the oxygen probe can be corrected by simultaneous optical determination of T, as the poly(acrylonitrile) microparticles containing the temperature indicator are incorporated into the film. The phosphorescent signals of the probes for T and barometric pressure, respectively, can be separated by optical filters due to the ≈75 nm difference in their emission maxima. The dual sensor is applicable to luminescence lifetime imaging of T and barometric pressure. It is the first luminescent dual sensor material for barometric pressure/T based exclusively on the use of IrIII complexes in combination with luminescence lifetime imaging.  相似文献   

6.
Interaction of charge transfer fluorophore N,N-dimethylaminonaphthyl-(acrylo)-nitrile (DMANAN) with globular proteins Human Serum Albumin (HSA) and Bovine Serum Albumin (BSA) brings forth a marked change in the position and intensity of band maxima both in case of absorption and fluorescence spectra. Spectroscopic approach has been elaborately implemented to explore the binding phenomena of the probe with HSA and BSA and it is found that the extent of binding of the probe to both serum albumins is similar in nature. Steady state fluorescence anisotropy values, fluorescence quenching study using acrylamide quencher and Red Edge Excitation Shift (REES) help in drawing reliable conclusions regarding the location of the probe molecule within the hydrophobic cavity of the proteins. An increase in fluorescence lifetime of the probe molecule solubilized in both the proteinous media also indicate that the probe is located at the motionally restricted environment inside the hydrophobic cavity of proteins and hence non-radiative channels are less operative than in the bulk water. Similarly, the variation of position and intensity of the emission maxima of DMANAN solubilized in micellar medium of Sodium Dodecyl Sulphate (SDS) also predicts well the critical micellar concentration (CMC) and polarity of micellar microenvironment.  相似文献   

7.
J Luo  WS Li  P Xu  LY Zhang  ZN Chen 《Inorganic chemistry》2012,51(17):9508-9516
A Zn(2+)-responsive bimodal magnetic resonance imaging (MRI) and luminescence imaging probe GdL was synthesized. The relaxivity and luminescence properties were examined. In the presence of 0.5 equiv of Zn(2+), the longitudinal relaxivity is increased from 3.8 mM(-1) s(-1) to 5.9 mM(-1) s(-1) at 23 MHz and 25 °C with 55% enhancement, whereas the fluorescence exhibits a 7-fold increase. The Zn(2+) responsive imaging probe shows favorable selectivity and tolerance over a variety of biologically relevant anions and metal ions in physiological pH range for both relaxivity and luminescence. In vitro phantom images and confocal fluorescence images in living cells show that the bimodal Zn(2+) probe can effectively enhance T(1)-weighted imaging contrast and luminescence imaging effect through Zn(2+) coordination with excellent cellmembrane permeability and biocompatibility. Spectral and electrospray ionization mass spectrometry (ESI-MS) studies indicate that two different Zn(2+)-bound species, (GdL)(2)Zn and GdLZn, are formed when 0.5 and 1 equiv of Zn(2+) are bound to GdL complex, respectively. Crystal structural determination and dysprosium-induced (17)O NMR shift (DIS) experiment demonstrate that the increased molecular weight and the improved molecular rigidity upon complexation of Zn(2+) with GdL is the primary factor for relaxivity enhancement. Significant enhancement of the luminescence is due to a heavy atom effect and much increased molecular rigidity upon Zn(2+) binding to 8-sulfonamidoquinoline chromophore.  相似文献   

8.
A europium(III) complex as an efficient singlet oxygen luminescence probe   总被引:1,自引:0,他引:1  
A new europium(III) complex, [4'-(10-methyl-9-anthryl)-2,2':6',2"-terpyridine-6,6"-diyl]bis(methylenenitrilo) tetrakis(acetate)-Eu(3+), was designed and synthesized as a highly sensitive and selective time-gated luminescence probe for singlet oxygen ((1)O2). The new probe is highly water soluble with a large stability constant of approximately 10(21) and a wide pH available range (pH 3-10), and can specifically react with (1)O2 to form its endoperoxide (EP-MTTA-Eu(3+)) with a high reaction rate constant at 10(10) M(-1) s(-1), accompanied by the remarkable increases of luminescence quantum yield from 0.90% to 13.8% and lifetime from 0.80 to 1.29 ms, respectively. The wide applicability of the probe was demonstrated by detection of (1)O2 generated from a MoO(4)(2-)/H(2)O2 system, a photosensitization system of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP), and a horseradish peroxidase catalyzed aerobic oxidation system of indole-3-acetic acid (IAA). In addition, it was found that the new probe could be easily transferred into living HeLa cells by incubation with TMPyP. A time-gated luminescence imaging technique that can fully eliminate the short-lived background fluorescence from TMPyP and cell components has been successfully developed for monitoring the time-dependent generation of (1)O2 in living cells.  相似文献   

9.
Lanthanides are attractive as biolabels because their long luminescence decay rates allow time-gated detection, which separates background scattering and fluorescence from the lanthanide emission. A stable and highly luminescent terbium complex based on a tetraisophthalamide (TIAM) chelate is paired with a polyaromatic-azo dark quencher (referred to as a Black Hole Quencher or BHQ) to prepare a series of 5'TIAM(Tb)/3'BHQ dual-labeled oligonucleotide probes with no secondary structure. Luminescence quenching efficiency within terbium/BHQ probes is very dependent on the terbium-BHQ distance. In an intact probe, the average terbium-BHQ distance is short, and Tb --> BHQ energy transfer is efficient, decreasing both the terbium emission intensity and lifetime. Upon hybridization or nuclease digestion, which spatially separate the Tb and BHQ moieties, the Tb luminescence intensity and lifetime increase. As a result, time-gated detection increases the emission intensity ratio of the unquenched probe/quenched probe due to the shorter lifetime of the quenched species. A 40-mer probe that has a 3-fold increase in steady-state luminescence upon digestion has a 50-fold increase when gated detection is used. This study demonstrates that time gating with lanthanide/dark quencher probes in energy transfer assays is an effective means of improving sensitivity.  相似文献   

10.
Tris(bipyridyl)ruthenium(II) complexes modified such that one of the bipyridines is appended with a crown ether display luminescence that is responsive to complexation with metal ions. The parent species, Ru(bpy)3(2+), is moderately luminescent, with an emission lifetime of about 1 micros in fluid solution at room temperature. The modified complexes are much less emissive, with lifetimes near 1 ns. Conformational flexibility and distortion in the crown-ether complexes enhance nonradiative decay. Noncovalent binding of metal ions, however, restores luminescence intensity by reducing nonradiative decay and increasing the lifetime 10- to 100-fold. Reported here are the syntheses and steady-state and time-resolved luminescence measurements in addition to other supporting spectroscopic characterization. Seven metals were investigated; significant luminescence enhancements occur in the presence of Mg2+, Ca2+, and Pb2+. Effective concentrations of metal ions range from tens of microM to hundreds of mM. The steady-state enhancements are readily measured, but they are less than would be expected from the lifetime changes, partly because only a portion (not more than 50%) of the fast (1 ns) decay in Ru(bpy)2(bpy-crown) is capable of converting to the conformation possessing the longer lifetime. A photophysical model is proposed to explain these and other observations.  相似文献   

11.
A europium probe for the ratiometric detection of potassium in water is presented. This probe demonstrates high sensitivity, with an affinity for K(+) in the mM range, and high selectivity for K(+) over Na(+), Ca(2+), Mg(2+) and Li(+). The long luminescence lifetime of the probe and its large Stokes shift further enable accurate determination of the concentration of K(+) in complex aqueous media.  相似文献   

12.
The new europium(III) chelate [2,2',2',2'-[[4'-(aminobiphenyl-4-yl)-2,2':6',2'-terpyridine- 6,6'-diyl]bis(methylenenitrilo)]tetrakis(acetato)] europium(III) (ATBTA-Eu3+) and its 4,6-dichloro-1,3,5-triazinyl and succinimidyl derivatives (DTBTA and NHS-ATBTA, respectively) were synthesized and characterized. Both labeling complexes DTBTA-Eu3+ and NHS-ATBTA-Eu3+ are luminescent. Especially DTBTA-Eu3+ is strongly luminescent, with a luminescence quantum yield of 9.1%, molar extinction coefficient of 3.1 x 10(4) cm(-1) M(-1) (335 nm), and luminescence lifetime of 1.02 ms. The excitation and emission maximum wavelengths of DTBTA-Eu3+ are 335 and 616 nm, respectively. The complex is very stable in aqueous buffers, with a conditional formation constant log K(DTBTA-Eu) of 25.0 at pH 8, and can be conjugated to DNA and proteins. The chelates are also highly resistant to thermal decomposition, photodegradation, and ozone oxidation. These properties prove that DTBTA-Eu3+ is suitable as a luminescence label in DNA assays.  相似文献   

13.
The luminescence spectra and lifetime of tris(2,2-bipyridine)ruthenium(II), Ru(bpy)3 2+, were studied in sol-gel reaction systems of tetramethoxysilane (TMOS) and titanium(IV) isopropoxide (TTIP) with HCl. Luminescence lifetime in the TMOS system increased as the sol-gel reaction proceeded, because diffusion-controlled luminescence quenching such as oxygen and collisional quenching with solvent molecules were suppressed in the rigid matrices. On the other hand, luminescence lifetime in the TTIP system decreased during the sol-gel reaction. The decrease in lifetime was ascribed to electron transfer from photoexcited Ru(bpy)3 2+ to the conduction band of the TiO2 xerogels. Extended X-ray absorption fine structure (EXAFS) measurements were done to associate lifetime in the Si-Ti xerogels with the structures of Ti4+ sites in the xerogels.  相似文献   

14.
A photoluminescence probe ARC-1185, possessing both high affinity towards basophilic protein kinases (PKs) and microsecond-scale luminescence lifetime when associated with a kinase, was used for the mapping of ARC-1185-PK complexes in living cells with time-gated luminescence microscopy.  相似文献   

15.
The Ru2+ complex [Ru(bpy)2(bpy-ph4-Si(CH3)3)]2+ can be electrostatically bound to the negatively charged channel entrances of dye-loaded zeolite L crystals where it acts as a functional stopcock molecule. Impressive electronic triplet-singlet excitation energy transfer from the Ru2+ complex to the acceptor dye oxazine 1 (Ox1) located inside the channels can be observed when the donor molecule is selectively excited. Time-resolved luminescence experiments have been performed on the separate components and on the assembled donor-acceptor material. The luminescence lifetime of the Ru2+ complex attached to the zeolite is reduced by a factor of 30 when Ox1 acceptor molecules are present. The fluorescence decay of Ox1 incorporated in zeolite L is single exponential with a lifetime of 3 ns. The much longer lifetime in zeolite L than in solution is due to the fact, that the diethyl groups are sterically restricted when the dye is inside the host.  相似文献   

16.
Lanthanide coordination polymers (LCPs) have recently emerged as attractive biosensor materials due to their flexible components, high tailorable properties and unique luminescence features. In this work, we designed a smart LCP probe of Tb-CIP/AMP {(CIP, ciprofloxacin) (AMP, adenosine monophosphate)} for Hg2+ detection by using lanthanide ions as metal nodes, CIP as ligand molecule, and AMP as bridging linker and recognition unit. Tb-CIP/AMP emits strong green luminescence due to the inclusion of AMP, which withdraws the coordinated water molecules and shields Tb3+ from the quenching effect of O–H vibration in water molecules. The subsequent addition of Hg2+ into Tb-CIP/AMP can strongly quench the fluorescence because of the specific coordination interaction between AMP and Hg2+. As a kind of Hg2+ nanosensor, the probe exhibited excellent selectivity for Hg2+ and high sensitivity with detection limit of 0.16 nM. In addition, the probe has long fluorescence lifetime up to millisecond and has been applied to detect Hg2+ in drinking water and human urine samples with satisfactory results. We envision that our strategy, in the future, could be extended to the designation of other LCP-based hypersensitive time-gated luminescence assays in biological media and biomedical imaging.  相似文献   

17.
This study is aimed at establishing optimal conditions for the use of 2,2'-[1,3-propanediylbis[(dimethyliminio)-3,1-propanediyl-1(4H)-pyridinyl-4-ylidenemethy-lidyne]]bis[3-methyl]-tetraiodide (BOBO-1) as a fluorescent probe in the characterization of lipid/DNA complexes (lipoplexes). The fluorescence spectra, anisotropy, fluorescence lifetimes and fluorescence quantum yields of this dimeric cyanine dye in plasmid DNA (2694 base pairs) with and without cationic liposomes (1,2-dioleoyl-3-trimethylammonium-propane [DOTAP]), are reported. The photophysical behavior of the dye in the absence of lipid was studied for several dye/DNA ratios using both supercoiled and relaxed plasmid. At dye/DNA ratios (d/b) below 0.01 the fluorescence intensity increases linearly, whereas lifetime and anisotropy values of the dye are constant (tau approximately 2.5 ns and = 0.20). By agarose gel electrophoresis it was verified that up to d/b = 0.01 DNA conformation is not considerably modified, whereas for d/b = 0.05-0.06 a single heavy band appears on the gel. For these and higher dye/DNA ratios the fluorescence intensity, anisotropy and average lifetime values decrease with an increase in BOBO-1 concentration. When cationic liposomes are added to the BOBO-1/DNA complex, an additional effect is noticed: The difference in the environment probed by BOBO-1 bound to DNA leads to a decrease in quantum yield and average lifetime values, and a redshift is apparent in the emission spectrum. For fluorescence measurements including energy transfer (FRET), a d/b ratio of 0.01 seems to be adequate because no considerable change on DNA conformation is detected, a considerable fluorescent signal is still measured after lipoplex formation, and energy migration is not efficient.  相似文献   

18.
In the present investigation, an attempt has been made to study the interaction of phenosafranin (PSF), a cationic phenazinium dye with the transport proteins, bovine serum albumin (BSA) and human serum albumin (HSA), employing steady-state and time-resolved fluorometric and circular dichroism (CD) techniques. The photophysical properties of the dye are altered on binding with the serum proteins. An explicit study with respect to the modification of the fluorescence and fluorescence anisotropy upon binding, effect of denaturant, fluorescence lifetime and CD measurements reveal that the dye binds to both BSA and HSA with almost the same affinity. Far-UV CD spectra indicate a decrease in the percentage of α-helicity only for BSA upon binding with the probe. Near-UV CD responses indicate an alteration in the tertiary structure of both the transport proteins because of binding.  相似文献   

19.
A lanthanide-binding tag site-specifically attached to a protein presents a tool to probe the protein by multiple spectroscopic techniques, including nuclear magnetic resonance, electron paramagnetic resonance and time-resolved luminescence spectroscopy. Here a new stable chiral LnIII tag, referred to as C12 , is presented for spontaneous and quantitative reaction with a cysteine residue to generate a stable thioether bond. The synthetic protocol of the tag is relatively straightforward, and the tag is stable for storage and shipping. It displays greatly enhanced reactivity towards selenocysteine, opening a route towards selective tagging of selenocysteine in proteins containing cysteine residues. Loaded with TbIII or TmIII ions, the C12 tag readily generates pseudocontact shifts (PCS) in protein NMR spectra. It produces a relatively rigid tether between lanthanide and protein, which is beneficial for interpretation of the PCSs by single magnetic susceptibility anisotropy tensors, and it is suitable for measuring distance distributions in double electron–electron resonance experiments. Upon reaction with cysteine or other thiol compounds, the TbIII complex exhibits a 100-fold enhancement in luminescence quantum yield, affording a highly sensitive turn-on luminescence probe for time-resolved FRET assays and enzyme reaction monitoring.  相似文献   

20.
Herein, we report a method for studying protein-peptide interactions which exploits the luminescence properties of Tb(III). Lanthanide-binding tags (LBTs) are short peptide sequences comprising 15-20 naturally occurring amino acids that bind Tb(III) with high affinity. These genetically encodable luminescent tags are smaller in size than the Aequorea victoria fluorescent proteins (AFPs) and benefit from the long-lived luminescence lifetime of lanthanides. In this study, luminescence resonance energy transfer (LRET) was used to monitor the interaction between SH2 domains and different phosphopeptides. For the study, the SH2 domains of Src and Crk kinase were each coexpressed with an LBT, and phosphorylated and nonphosphorylated peptides were chemically synthesized with organic fluorophores. The LRET between the protein-bound Tb(III) and the peptide-based organic fluorophore was shown to be specific for the recognition of the SH2 domain and the peptide binding partner. This method can detect differences in binding affinity and can be used to measure the dissociation constant for the protein-peptide interaction. In addition, decay experiments can be used to calculate the distance between a site in the bound peptide and the protein using F?rster theory. In all of these experiments, the millisecond luminescence lifetime of Tb(III) can be exploited using time-resolved detection to eliminate background fluorescence from organic fluorophores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号