首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Chiu WH  Peng SM  Che CM 《Inorganic chemistry》1996,35(11):3369-3374
Two bis(amido)ruthenium(IV) complexes, [Ru(IV)(bpy)(L-H)(2)](2+) and [Ru(IV)(L)(L-H)(2)](2+) (bpy = 2,2'-bipyridine, L = 2,3-diamino-2,3-dimethylbutane, L-H = (H(2)NCMe(2)CMe(2)NH)(-)), were prepared by chemical oxidation of [Ru(II)(bpy)(L)(2)](2+) and the reaction of [(n-Bu)(4)N][Ru(VI)NCl(4)] with L, respectively. The structures of [Ru(bpy)(L-H)(2)][ZnBr(4)].CH(3)CN and [Ru(L)(L-H)(2)]Cl(2).2H(2)O were determined by X-ray crystal analysis. [Ru(bpy)(L-H)(2)][ZnBr(4)].CH(3)CN crystallizes in the monoclinic space group P2(1)/n with a = 12.597(2) ?, b = 15.909(2) ?, c = 16.785(2) ?, beta = 91.74(1) degrees, and Z = 4. [Ru(L)(L-H)(2)]Cl(2).2H(2)O crystallizes in the tetragonal space group I4(1)/a with a = 31.892(6) ?, c = 10.819(3) ?, and Z = 16. In both complexes, the two Ru-N(amide) bonds are cis to each other with bond distances ranging from 1.835(7) to 1.856(7) ?. The N(amide)-Ru-N(amide) angles are about 110 degrees. The two Ru(IV) complexes are diamagnetic, and the chemical shifts of the amide protons occur at around 13 ppm. Both complexes display reversible metal-amide/metal-amine redox couples in aqueous solution with a pyrolytic graphite electrode. Depending on the pH of the media, reversible/quasireversible 1e(-)-2H(+) Ru(IV)-amide/Ru(III)-amine and 2e(-)-2H(+) Ru(IV)-amide/Ru(II)-amine redox couples have been observed. At pH = 1.0, the E degrees is 0.46 V for [Ru(IV)(bpy)(L-H)(2)](2+)/[Ru(III)(bpy)(L)(2)](3+) and 0.29 V vs SCE for [Ru(IV)(L)(L-H)(2)](2+)/[Ru(III)(L)(3)](3+). The difference in the E degrees values for the two Ru(IV)-amide complexes has been attributed to the fact that the chelating saturated diamine ligand is a better sigma-donor than 2,2'-bipyridine.  相似文献   

2.
Capillary electrophoresis (CE) and electrospray ionisation (ESI) mass spectra of aqueous solutions of manganese(II) complexes of the monoanions of the pentadentate ligands N-methyl-N'-carboxymethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine (mcbpen(-)) and N-benzyl-N'-carboxymethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine (bcbpen(-)), show the presence of a mixture of closely related Mn(II) species, assigned to the mono, di-, tri- and poly-cationic complexes [Mn(II)(L)(H(2)O)](n)(n+), L = mcbpen(-) or bcbpen(-) with n = 1, 2, 3, etc. In solution, these complexes are reversibly oxidized by tert-butyl hydrogen peroxide (TBHP), (NH(4))(2)[Ce(NO(3))(6)], Ce(ClO(4))(4), oxone and [Ru(bipy)(3)](3+) to form metastable (t(?) = min to h) higher valent (hydr)oxide species, showing a collective maximum absorbance at 430 nm. The same species can be produced by [Ru(bipy)(3)](2+)-mediated photooxidization in the presence of an electron acceptor. TBHP oxidation of the complexes, in large excesses of the TBHP, is concurrent with an O(2) evolution with turnovers of up to 1.5 × 10(4) mol of O(2) per mol of [Mn] and calculated rate constants from two series of experiments of 0.039 and 0.026 mol[O(2)] s(-1) M(-2). A 1:1 reaction of TBHP with [Mn] is rate determining and the resultant species is proposed to be the mononuclear, catalytically competent, [Mn(IV)(O)(mcbpen)](+). At very close m/z values [Mn(III)(OH)(mcbpen)](+), [Mn(2)(III/IV)(O)(2)(mcbpen)(2)](+) and [Mn(IV)(2)(O)(2)(mcbpen)(2)](2+) are detected by ESI MS and CE when the concentration of TBHP is comparable to or lower than that of [Mn]. These are conditions that occur post catalysis and these species are derived from [Mn(IV)(O)(mcbpen)](+) through condensation reactions.  相似文献   

3.
A trinuclear [[Ru(II)(bpy)(2)(bpy-terpy)](2)Fe(II)](6+) complex (I) in which a Fe(II)-bis-terpyridine-like centre is covalently linked to two Ru(II)-tris-bipyridine-like moieties by a bridging bipyridine-terpyridine ligand has been synthesised and characterised. Its electrochemical, photophysical and photochemical properties have been investigated in CH(3)CN and compared with those of mononuclear model complexes. The cyclic voltammetry of (I) exhibits, in the positive region, two successive reversible oxidation processes, corresponding to the Fe(III)/Fe(II) and Ru(III)/Ru(II) redox couples. These systems are clearly separated (DeltaE(1/2) = 160 mV), demonstrating the lack of an electronic connection between the two subunits. The two oxidized forms of the complex, [[Ru(II)(bpy)(2)(bpy-terpy)](2)Fe(III)](7+) and [[Ru(III)(bpy)(2)(terpy-bpy)](2)Fe(III)](9+), obtained after two successive exhaustive electrolyses, are stable. (I) is poorly luminescent, indicating that the covalent linkage of the Ru(II)-tris-bipyridine to the Fe(II)-bis-terpyridine subunit leads to a strong quenching of the Ru(II)* excited state by energy transfer to the Fe(II) centre. Luminescence lifetime experiments show that the process occurs within 6 ns. The nature of the energy transfer process is discussed and an intramolecular energy exchange is proposed as a preferable deactivation pathway. Nevertheless this energy transfer can be efficiently quenched by an electron transfer process in the presence of a large excess of the 4-bromophenyl diazonium cation, playing the role of a sacrificial oxidant. Finally complete photoinduced oxidation of (I) has been performed by continuous photolysis experiments in the presence of a large excess of this sacrificial oxidant. The comparison with a mixture of the corresponding mononuclear model complexes has been made.  相似文献   

4.
Two Mn(II) complexes are isolated and X-ray characterized, namely, cis-[(L(2))Mn(II)(Cl)(2)] (1) and [(L(3))Mn(II)Cl(OH(2))](ClO(4)) (2(ClO(4))), where L(2) and L(3) are the well-known tetradentate N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine and N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)propane-1,3-diamine ligands, respectively. The crystal structure reveals that whereas the ligand L(2) is in the cis-alpha conformation in complex 1, the ligand L(3) is in the more unusual cis-beta conformation in 2. EPR spectra are recorded on frozen solutions for both complexes and are characteristic of Mn(II) species. Electrochemical behaviors are investigated on acetonitrile solution for both complexes and show that cation 2 exists as closely related Mn(II) species in equilibrium. For both complexes exhaustive bulk electrolyses of acetonitrile solution are performed at oxidative potential in various experimental conditions. In the presence of 2,6-lutidine and after elimination of chloride ligands, the formation of the di-mu-oxo mixed-valent complexes [(L(2))Mn(III)(mu-O)(2)Mn(IV)(L(2))](3+) (3a) and [(L(3))Mn(III)(mu-O)(2)Mn(IV)(L(3))](3+) (4) is confirmed by UV-vis and EPR spectroscopies and cyclic voltammetry. In addition crystals of 4(ClO(4))(3) were isolated, and the X-ray structure reveals the cis-alphaconformation of L(3). In the absence of 2,6-lutidine and without elimination of the exogenous chloride ions, the electrochemical oxidation of 1 leads to the formation of the mononuclear Mn(III) complex, namely, [(L(2))Mn(III)(Cl)(2)](+) (5), as confirmed by UV-vis as well as parallel mode EPR spectroscopy and cyclic voltammetry. In the same conditions, the electrochemical oxidation of complex 2 is more intricate, and a thorough analysis of EPR spectra establishes the formation of the binuclear mono-mu-oxo mixed-valent [(L(3))ClMn(III)(mu-O)Mn(IV)Cl(L(3))](3+) (6) complexes. Electrochemical conversion of Mn(II) complexes into mixed-valent Mn(2)(III,IV) oxo-bridged complexes in the presence of 2,6-lutidine is discussed. The role of the chloride ligands as well as that of L(3) in the building of oxo bridges is discussed. Differences in behavior between L(2) and L(3) are commented on.  相似文献   

5.
The photocatalytic formation of a non-heme oxoiron(IV) complex, [(N4Py)Fe(IV)(O)](2+) [N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine], efficiently proceeds via electron transfer from the excited state of a ruthenium complex, [Ru(II)(bpy)(3)](2+)* (bpy = 2,2'-bipyridine) to [Co(III)(NH(3))(5)Cl](2+) and stepwise electron-transfer oxidation of [(N4Py)Fe(II)](2+) with 2 equiv of [Ru(III)(bpy)(3)](3+) and H(2)O as an oxygen source. The oxoiron(IV) complex was independently generated by both chemical oxidation of [(N4Py)Fe(II)](2+) with [Ru(III)(bpy)(3)](3+) and electrochemical oxidation of [(N4Py)Fe(II)](2+).  相似文献   

6.
Two new bidentate ligands (1 and 2) with bicyclic guanidine moieties were synthesized and attached to a Ru(II)(bpy)(2) core (bpy = 2,2'-bipyridine) to afford complexes 3 and 4, which were characterized by spectroscopic and electrochemical methods. Complex 4 was further characterized by X-ray crystallography. In cyclic voltammetric studies, both complexes show a Ru(II/III) couple, which is 500 mV less positive than the Ru(II/III) couple of Ru(bpy)(3)(2+). The (1)MLCT and (3)MLCT states of 3 (560 nm/745 nm) and 4 (550 nm/740 nm) are significantly red-shifted with respect to Ru(bpy)(3)(2+) (440 nm/620 nm). Compounds 3 and 4 exhibit emission from a Ru(II)-to-bpy (3)MLCT state, which is rarely the emitting state at λ > 700 nm in [Ru(bpy)(2)(N-N)](2+) complexes.  相似文献   

7.
Three new tetrathiafulvalene-substituted 2,2'-bipyridine ligands, cis-bpy-TTF(1), trans-bpy-TTF(1), and cis-bpy-TTF(2) have been prepared and characterized. X-ray analysis of trans-bpy-TTF(1) is also reported. Such ligands have been used to prepare two new trinuclear Ru(II) complexes, namely, [[(bpy)(2)Ru(micro-2,3-dpp)](2)Ru(bpy-TTF(1))](PF(6))(6) (9; bpy=2,2'-bipyridine; 2,3-dpp=2,3-bis(2'-pyridyl)pyrazine) and [[(bpy)(2)Ru(micro-2,3-dpp)](2)Ru(bpy-TTF(2))](PF(6))(6) (10). These compounds can be viewed as coupled antennas and charge-separation systems, in which the multichromophoric trinuclear metal subunits act as light-harvesting antennas and the tetrathiafulvalene electron donors can induce charge separation. The absorption spectra, redox behavior, and luminescence properties (both at room temperature in acetonitrile and at 77 K in a rigid matrix of butyronitrile) of the trinuclear metal complexes have been studied. For the sake of completeness, the mononuclear compounds [(bpy)(2)Ru(bpy-TTF(1))](PF(6))(2) (7) and [(bpy)(2)Ru(bpy-TTF(2))](PF(6))(2) (8) were also synthesized and studied. The properties of the tetrathiafulvalene-containing species were compared to those of the model compounds [Ru(bpy)(2)(4,4'-Mebpy)](2+) (4,4'-Mebpy=4,4'-dimethyl-2,2'-bipyridine) and [[(bpy)(2)Ru(micro-2,3-dpp)](2)Ru(bpy)](6+). The absorption spectra and redox behavior of all the new metal compounds can be interpreted by a multicomponent approach, in which specific absorption features and redox processes can be assigned to specific subunits of the structures. The luminescence properties of the complexes in rigid matrices at 77 K are very similar to those of the corresponding model compounds without TTF moieties, whereas the new species are nonluminescent, or exhibit very weak emissions relative to those of the model compounds in fluid solution at room temperature. Time-resolved transient absorption spectroscopy confirmed that the potentially luminescent MLCT states of 7-10 are significantly shorter lived than the corresponding states of the model species. Photoinduced electron-transfer processes from the TTF moieties to the (excited) MLCT chromophore(s) are held responsible for the quenching processes.  相似文献   

8.
The geometry and electronic structure of cis-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) and its higher oxidation state species up formally to Ru(VI) have been studied by means of UV-vis, EPR, XAS, and DFT and CASSCF/CASPT2 calculations. DFT calculations of the molecular structures of these species show that, as the oxidation state increases, the Ru-O bond distance decreases, indicating increased degrees of Ru-O multiple bonding. In addition, the O-Ru-O valence bond angle increases as the oxidation state increases. EPR spectroscopy and quantum chemical calculations indicate that low-spin configurations are favored for all oxidation states. Thus, cis-[Ru(IV)(bpy)(2)(OH)(2)](2+) (d(4)) has a singlet ground state and is EPR-silent at low temperatures, while cis-[Ru(V)(bpy)(2)(O)(OH)](2+) (d(3)) has a doublet ground state. XAS spectroscopy of higher oxidation state species and DFT calculations further illuminate the electronic structures of these complexes, particularly with respect to the covalent character of the O-Ru-O fragment. In addition, the photochemical isomerization of cis-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) to its trans-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) isomer has been fully characterized through quantum chemical calculations. The excited-state process is predicted to involve decoordination of one aqua ligand, which leads to a coordinatively unsaturated complex that undergoes structural rearrangement followed by recoordination of water to yield the trans isomer.  相似文献   

9.
The reactions of bidentate diimine ligands (L2) with cationic bis(diimine)[Ru(L)(L1)(CO)Cl]+ complexes (L, L1, L2 are dissimilar diimine ligands), in the presence of trimethylamine-N-oxide (Me3NO) as a decarbonylation reagent, lead to the formation of heteroleptic tris(diimine) ruthenium(II) complexes, [Ru(L)(L1)(L2)]2+. Typically isolated as hexafluorophosphate or perchlorate salts, these complexes were characterised by UV-visible, infrared and mass spectroscopy, cyclic voltammetry, microanalyses and NMR spectroscopy. Single crystal X-ray studies have elucidated the structures of K[Ru(bpy)(phen)(4,4'-Me(2)bpy)](PF(6))(3).1/2H(2)O, [Ru(bpy)(5,6-Me(2)phen)(Hdpa)](ClO(4))(2), [Ru(bpy)(phen)(5,6-Me(2)phen)](ClO(4))(2), [Ru(bpy)(5,6'-Me(2)phen)(4,4'-Me(2)bpy)](PF(6))(2).EtOH, [Ru(4,4'-Me(2)bpy)(phen)(Hdpa)](PF(6))(2).MeOH and [Ru(bpy)(4,4'-Me(2)bpy)(Hdpa)](ClO(4))(2).1/2Hdpa (where Hdpa is di(2-pyridyl)amine). A novel feature of the first complex is the presence of a dinuclear anionic adduct, [K(2)(PF(6))(6)](4-), in which the two potassium centres are bridged by two fluorides from different hexafluorophosphate ions forming a K(2)F(2) bridging unit and by two KFPFK bridging moieties.  相似文献   

10.
The physical and photophysical properties of a series of monometallic, [Ru(bpy)(2)(dmb)](2+), [Ru(bpy)(2)(BPY)](2+), [Ru(bpy)(Obpy)](2+) and [Ru(bpy)(2)(Obpy)](2+), and bimetallic, [{Ru(bpy)(2)}(2)(BPY)](4+) and [{Ru(bpy)(2)}(2)(Obpy)](4+), complexes are examined, where bpy is 2,2'-bipyridine, dmb is 4,4'-dimethyl-2,2'-bipyridine, BPY is 1,2-bis(4-methyl-2,2'-bipyridin-4'-yl)ethane, and Obpy is 1,2-bis(2,2'-bipyridin-6-yl)ethane. The complexes display metal-to-ligand charge transfer transitions in the 450 nm region, intraligand pi --> pi transitions at energies greater than 300 nm, a reversible oxidation of the ruthenium(II) center in the 1.25-1.40 V vs SSCE region, a series of three reductions associated with each coordinated ligand commencing at -1.3 V and ending at approximately -1.9 V, and emission from a (3)MLCT state having energy maxima between 598 and 610 nm. The Ru(III)/Ru(II) oxidation of the two bimetallic complexes is a single, two one-electron process. Relative to [Ru(bpy)(2)(BPY)](2+), the Ru(III)/Ru(II) potential for [Ru(bpy)(2)(Obpy)](2+) increases from 1.24 to 1.35 V, the room temperature emission lifetime decreases from 740 to 3 ns, and the emission quantum yield decreases from 0.078 to 0.000 23. Similarly, relative to [{Ru(bpy)(2)}(2)(BPY)](4+), the Ru(III)/Ru(II) potential for [{Ru(bpy)(2)}(2)(Obpy)](4+) increases from 1.28 to 1.32 V, the room temperature emission lifetime decreases from 770 to 3 ns, and the room temperature emission quantum yield decreases from 0.079 to 0.000 26. Emission lifetimes measured in 4:1 ethanol:methanol were temperature dependent over 90-360 K. In the fluid environment, emission lifetimes display a biexponential energy dependence ranging from 100 to 241 cm(-)(1) for the first energy of activation and 2300-4300 cm(-)(1) for the second one. The smaller energy is attributed to changes in the local matrix of the chromophores and the larger energy of activation to population of a higher energy dd state. Explanations for the variations in physical properties are based on molecular mechanics calculations which reveal that the Ru-N bond distance increases from 2.05 ? (from Ru(II) to bpy and BPY) to 2.08 ? (from Ru(II) to Obpy) and that the metal-to-metal distance increases from approximately 7.5 ? for [{Ru(bpy)(2)}(2)(Obpy)](4+) to approximately 14 ? for [{Ru(bpy)(2)}(2)(BPY)](4+).  相似文献   

11.
Mononuclear ruthenium complexes [RuCl(L1)(CH(3)CN)(2)](PF(6)) (2a), [RuCl(L2)(CH(3)CN)(2)](PF(6)) (2b), [Ru(L1)(CH(3)CN)(3)](PF(6))(2) (4a), [Ru(L2)(CH(3)CN)(3)](PF(6))(2) (4b), [Ru(L2)(2)](PF(6))(2) (5), [RuCl(L1)(CH(3)CN)(PPh(3))](PF(6)) (6), [RuCl(L1)(CO)(2)](PF(6)) (7), and [RuCl(L1)(CO)(PPh(3))](PF(6)) (8), and a tetranuclear complex [Ru(2)Ag(2)Cl(2)(L1)(2)(CH(3)CN)(6)](PF(6))(4) (3) containing 3-(1,10-phenanthrolin-2-yl)-1-(pyridin-2-ylmethyl)imidazolylidene (L1) and 3-butyl-1-(1,10-phenanthrolin-2-yl)imidazolylidene (L2) have been prepared and fully characterized by NMR, ESI-MS, UV-vis spectroscopy, and X-ray crystallography. Both L1 and L2 act as pincer NNC donors coordinated to ruthenium (II) ion. In 3, the Ru(II) and Ag(I) ions are linked by two bridging Cl(-) through a rhomboid Ag(2)Cl(2) ring with two Ru(II) extending to above and down the plane. Complexes 2-8 show absorption maximum over the 354-428 nm blueshifted compared to Ru(bpy)(3)(2+) due to strong σ-donating and weak π-acceptor properties of NHC ligands. Electrochemical studies show Ru(II)/Ru(III) couples over 0.578-1.274 V.  相似文献   

12.
New heterobimetallic tetranuclear complexes of formula [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Mn(II)(bpy)(2)](2)(ClO(4))(2)·CH(3)CN (1), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2a), [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Ni(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (2b), [Fe(III){HB(pz)(3)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3a), and [Fe(III){B(pz)(4)}(CN)(2)(μ-CN)Co(II)(dmphen)(2)](2)(ClO(4))(2)·2CH(3)OH (3b), [HB(pz)(3)(-) = hydrotris(1-pyrazolyl)borate, B(Pz)(4)(-) = tetrakis(1-pyrazolyl)borate, dmphen = 2,9-dimethyl-1,10-phenanthroline, bpy = 2,2'-bipyridine] have been synthesized and structurally and magnetically characterized. Complexes 1-3b have been prepared by following a rational route based on the self-assembly of the tricyanometalate precursor fac-[Fe(III)(L)(CN)(3)](-) (L = tridentate anionic ligand) and cationic preformed complexes [M(II)(L')(2)(H(2)O)(2)](2+) (L' = bidentate α-diimine type ligand), this last species having four blocked coordination sites and two labile ones located in cis positions. The structures of 1-3b consist of cationic tetranuclear Fe(III)(2)M(II)(2) square complexes [M = Mn (1), Ni (2a and 2b), Co (3a and 3b)] where corners are defined by the metal ions and the edges by the Fe-CN-M units. The charge is balanced by free perchlorate anions. The [Fe(L)(CN)(3)](-) complex in 1-3b acts as a ligand through two cyanide groups toward two divalent metal complexes. The magnetic properties of 1-3b have been investigated in the temperature range 2-300 K. A moderately strong antiferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Mn(II) (S = 5/2) ions has been found for 1 leading to an S = 4 ground state (J(1) = -6.2 and J(2) = -2.7 cm(-1)), whereas a moderately strong ferromagnetic interaction between the low-spin Fe(III) (S = 1/2) and high-spin Ni(II) (S = 1) and Co(II) (S = 3/2) ions has been found for complexes 2a-3b with S = 3 (2a and 2b) and S = 4 (3a and 3b) ground spin states [J(1) = +21.4 cm(-1) and J(2) = +19.4 cm(-1) (2a); J(1) = +17.0 cm(-1) and J(2) = +12.5 cm(-1) (2b); J(1) = +5.4 cm(-1) and J(2) = +11.1 cm(-1) (3a); J(1) = +8.1 cm(-1) and J(2) = +11.0 cm(-1) (3b)] [the exchange Hamiltonian being of the type H? = -J(S?(i)·S?(j))]. Density functional theory (DFT) calculations have been used to substantiate the nature and magnitude of the exchange magnetic coupling observed in 1-3b and also to analyze the dependence of the exchange magnetic coupling on the structural parameters of the Fe-C-N-M skeleton.  相似文献   

13.
A series of Ru(II)-peptide nucleic acid (PNA)-like monomers, [Ru(bpy)(2)(dpq-L-PNA-OH)](2+) (M1), [Ru(phen)(2)(dpq-L-PNA-OH)](2+) (M2), [Ru(bpy)(2)(dppz-L-PNA-OH)](2+) (M3), and [Ru(phen)(2)(dppz-L-PNA-OH)](2+) (M4) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, dpq-L-PNA-OH = 2-(N-(2-(((9H-fluoren-9-yl)methoxy)carbonylamino)ethyl)-6-(dipyrido[3,2-a:2',3'-c]phenazine-11-carboxamido)hexanamido)acetic acid, dppz-L-PNA-OH = 2-(N-(2-(((9H-fluoren-9-yl) methoxy)carbonylamino)ethyl)-6-(dipyrido[3,2-f:2',3'-h]quinoxaline-2-carboxamido)acetic acid) have been synthesized and characterized by IR and (1)H NMR spectroscopy, mass spectrometry, and elemental analysis. As is typical for Ru(II)-tris(diimine) complexes, acetonitrile solutions of these complexes (M1-M4) show MLCT transitions in the 443-455 nm region and emission maxima at 618, 613, 658, and 660 nm, respectively, upon photoexcitation at 450 nm. Changes in the ligand environment around the Ru(II) center are reflected in the luminescence and electrochemical response obtained from these monomers. The emission intensity and quantum yield for M1 and M2 were found to be higher than for M3 and M4. Electrochemical studies in acetonitrile show the Ru(II)-PNA monomers to undergo a one-electron redox process associated with Ru(II) to Ru(III) oxidation. A positive shift was observed in the reversible redox potentials for M1-M4 (962, 951, 936, and 938 mV, respectively, vs Fc(0/+) (Fc = ferrocene)) in comparison with [Ru(bpy)(3)](2+) (888 mV vs Fc(0/+)). The ability of the Ru(II)-PNA monomers to generate electrochemiluminescence (ECL) was assessed in acetonitrile solutions containing tripropylamine (TPA) as a coreactant. Intense ECL signals were observed with emission maxima for M1-M4 at 622, 616, 673, and 675 nm, respectively. At an applied potential sufficiently positive to oxidize the ruthenium center, the integrated intensity for ECL from the PNA monomers was found to vary in the order M1 (62%) > M3 (60%) > M4 (46%) > M2 (44%) with respect to [Ru(bpy)(3)](2+) (100%). These findings indicate that such Ru(II)-PNA bioconjugates could be investigated as multimodal labels for biosensing applications.  相似文献   

14.
The oxidation state of the chromium center in the following compounds has been probed using a combination of chromium K-edge X-ray absorption spectroscopy and density functional theory: [Cr(phen)(3)][PF(6)](2) (1), [Cr(phen)(3)][PF(6)](3) (2), [CrCl(2)((t)bpy)(2)] (3), [CrCl(2)(bpy)(2)]Cl(0.38)[PF(6)](0.62) (4), [Cr(TPP)(py)(2)] (5), [Cr((t)BuNC)(6)][PF(6)](2) (6), [CrCl(2)(dmpe)(2)] (7), and [Cr(Cp)(2)] (8), where phen is 1,10-phenanthroline, (t)bpy is 4,4'-di-tert-butyl-2,2'-bipyridine, and TPP(2-) is doubly deprotonated 5,10,15,20-tetraphenylporphyrin. The X-ray crystal structures of complexes 1, [Cr(phen)(3)][OTf](2) (1'), and 3 are reported. The X-ray absorption and computational data reveal that complexes 1-5 all contain a central Cr(III) ion (S(Cr) = (3)/(2)), whereas complexes 6-8 contain a central low-spin (S = 1) Cr(II) ion. Therefore, the electronic structures of 1-8 are best described as [Cr(III)(phen(?))(phen(0))(2)][PF(6)](2), [Cr(III)(phen(0))(3)][PF(6)](3), [Cr(III)Cl(2)((t)bpy(?))((t)bpy(0))], [Cr(III)Cl(2)(bpy(0))(2)]Cl(0.38)[PF(6)](0.62), [Cr(III)(TPP(3?-))(py)(2)], [Cr(II)((t)BuNC)(6)][PF(6)](2), [Cr(II)Cl(2)(dmpe)(2)], and [Cr(II)(Cp)(2)], respectively, where (L(0)) and (L(?))(-) (L = phen, (t)bpy, or bpy) are the diamagnetic neutral and one-electron-reduced radical monoanionic forms of L, and TPP(3?-) is the one-electron-reduced doublet form of diamagnetic TPP(2-). Following our previous results that have shown [Cr((t)bpy)(3)](2+) and [Cr(tpy)(2)](2+) (tpy = 2,2':6',2"-terpyridine) to contain a central Cr(III) ion, the current results further refine the scope of compounds that may be described as low-spin Cr(II) and reveal that this is a very rare oxidation state accessible only with ligands in the strong-field extreme of the spectrochemical series.  相似文献   

15.
The Ru(2)(III,II) mixed-valent state is strongly stabilized in [(bpy)(2)Ru(mu-bttz)Ru(bpy)(2)](5+) (3(5+), bttz = 3,6-bis(2-thienyl)-1,2,4,5-tetrazine, as evident from lowered oxidation potentials and isolability, a strongly increased comproportionation constant K(c) = 10(16.6), and a high-energy intervalence charge transfer band at 10100 cm(-1). Curiously, no such effects were observed for the diosmium(III,II) analogue, whereas the related systems [(bpy)(2)M(mu-bmptz)M(bpy)(2)](5+), bmptz = 3,6-bis(4-methyl-2-pyridyl)-1,2,4,5-tetrazine, exhibit conventional behavior, i.e., a slightly higher K(c) value of the Os(2)(III,II) analogue. EPR signals were observed at 4 K for 3(5+) but not for the other mixed-valent species, and high-frequency (285 GHz) EPR was employed to study the diruthenium(II) radical complexes 2(3+) and 3(3+).  相似文献   

16.
The article deals with the ruthenium complexes, [(bpy)Ru(Q')(2)] (1-3) incorporating two unsymmetrical redox-noninnocent iminoquinone moieties [bpy = 2,2'-bipyridine; Q' = 3,5-di-tert-butyl-N-aryl-1,2-benzoquinonemonoimine, aryl = C(6)H(5) (Q'(1)), 1; m-Cl(2)C(6)H(3) (Q'(2)), 2; m-(OCH(3))(2)C(6)H(3) (Q'(3)), 3]. 1 and 3 have been preferentially stabilised in the cc-isomeric form while both the ct- and cc-isomeric forms of 2 are isolated [ct: cis and trans and cc: cis and cis with respect to the mutual orientations of O and N donors of two Q']. The isomeric identities of 1-3 have been authenticated by their single-crystal X-ray structures. The collective consideration of crystallographic and DFT data along with other analytical events reveals that 1-3 exhibit the valence configuration of [(bpy)Ru(II)(Q'(Sq))(2)]. The magnetization studies reveal a ferromagnetic response at 300 K and virtual diamagnetic behaviour at 2 K. DFT calculations on representative 2a and 2b predict that the excited triplet (S = 1) state is lying close to the singlet (S = 0) ground state with singlet-triplet separation of 0.038 eV and 0.075 eV, respectively. In corroboration with the paramagnetic features the complexes exhibit free radical EPR signals with g~2 and (1)HNMR spectra with broad aromatic proton signals associated with the Q' at 300 K. Experimental results in conjunction with the DFT (for representative 2a and 2b) reveal iminoquinone based preferential electron-transfer processes leaving the ruthenium(ii) ion mostly as a redox insensitive entity: [(bpy)Ru(II)(Q'(Q))(2)](2+) (1(2+)-3(2+)) ? [(bpy)Ru(II)(Q(')(Sq))(Q(')(Q))](+) (1(+)-3(+)) ? [(bpy)Ru(II)(Q(')(Sq))(2)] (1-3) ? [(bpy)Ru(II)(Q(')(Sq))(Q(')(Cat))](-)/[(bpy)Ru(III)(Q(')(Cat))(2)](-) (1(-)-3(-)). The diamagnetic doubly oxidised state, [(bpy)Ru(II)(Q'(Q))(2)](2+) in 1(2+)-3(2+) has been authenticated further by the crystal structure determination of the representative [(bpy)Ru(II)(Q'(3))(2)](ClO(4))(2) [3](ClO(4))(2) as well as by its sharp (1)H NMR spectrum. The key electronic transitions in each redox state of 1(n)-3(n) have been assigned by TD-DFT calculations on representative 2a and 2b.  相似文献   

17.
We have successfully applied electrospray ionization mass spectrometry (ESI-MS) and (1)H NMR analyses to study ligand substitution reactions of mu-oxo ruthenium bipyridine dimers cis,cis-[(bpy)(2)(L)RuORu(L')(bpy)(2)](n+) (bpy = 2,2'-bipyridine; L and L' = NH(3), H(2)O, and HO(-)) with solvent molecules, that is, acetonitrile, methanol, and acetone. The results clearly show that the ammine ligand is very stable and was not substituted by any solvents, while the aqua ligand was rapidly substituted by all the solvents. In acetonitrile and acetone solutions, the substitution reaction of the aqua ligand(s) competed with a deprotonation reaction from the ligand. The hydroxyl ligand was not substituted by acetonitrile or acetone, but it exchanged slowly with CH(3)O(-) in methanol. The substitution reaction of the aqua ligands in [(bpy)(2)(H(2)O)Ru(III)ORu(III)(H(2)O)(bpy)(2)](4+) was more rapid than that of the hydroxyl ligand in [(bpy)(2)(H(2)O)Ru(III)ORu(IV)(OH)(bpy)(2)](4+). In methanol, slow reduction of Ru(III) to Ru(II) was observed in all the mu-oxo dimers, and the Ru-O-Ru bridge was then cleaved to give mononuclear Ru(II) complexes.  相似文献   

18.
The redox systems [Ru(L)(bpy)(2)](k), [Ru(L)(2)(bpy)](m), and [Ru(L)(3)](n) containing the potentially redox-active ligand 9-oxidophenalenone = L(-) were investigated by spectroelectrochemistry (UV-vis-near-IR and electron paramagnetic resonance) in conjunction with density functional theory (DFT) calculations. Compounds [Ru(L(-))(bpy)(2)]ClO(4) ([1]ClO(4)) and [Ru(L(-))(2)(bpy)]ClO(4) ([2]ClO(4)) were structurally characterized. In addition to establishing electron-transfer processes involving the Ru(II)/Ru(III)/Ru(IV) and bpy(0)/bpy(?-) couples, evidence for the noninnocent behavior of L(-) was obtained from [Ru(IV)(L(?))(L(-))(bpy)](3+), which exhibits strong near-IR absorption due to ligand-to-ligand charge transfer. In contrast, the lability of the electrogenerated anion [Ru(L)(2)(bpy)](-) is attributed to a resonance situation [Ru(II)(L(?2-))(L(-))(bpy)](-)/[Ru(II)(L(-))(2) (bpy(?-))](-), as suggested by DFT calculations.  相似文献   

19.
The series of 4-center unsaturated chelate ligands A═B-C═D with redox activity to yield (-)A-B═C-D(-) in two steps has been complemented by two new combinations RNNC(R')E, E = O or S, R = R' = Ph. The ligands N-benzoyl-N'-phenyldiazene = L(O), and N-thiobenzoyl-N'-phenyldiazene = L(S), (obtained in situ) form structurally characterized compounds [(acac)(2)Ru(L)], 1 with L = L(O), and 3 with L = L(S), and [(bpy)(2)Ru(L)](PF(6)), 2(PF(6)) with L = L(O), and 4(PF(6)) with L = L(S) (acac(-) = 2,4-pentanedionato; bpy = 2,2'-bipyridine). According to spectroscopy and the N-N distances around 1.35 ? and N-C bond lengths of about 1.33 ?, all complexes involve the monoanionic (radical) ligand form. For 1 and 3, the antiferromagnetic spin-spin coupling with electron transfer-generated Ru(III) leads to diamagnetic ground states of the neutral complexes, whereas the cations 2(+) and 4(+) are EPR-active radical ligand complexes of Ru(II). The complexes are reduced and oxidized in reversible one-electron steps. Electron paramagnetic resonance (EPR) and UV-vis-NIR spectroelectrochemistry in conjunction with time-dependent density functional theory (TD-DFT) calculations allowed us to assign the electronic transitions in the redox series, revealing mostly ligand-centered electron transfer: [(acac)(2)Ru(III)(L(0))](+) ? [(acac)(2)Ru(III)(L(?-))] ? [(acac)(2)Ru(III)(L(2-))](-)/[(acac)(2)Ru(II)(L(?-))](-), and [(bpy)(2)Ru(III)(L(?-))](2+)/[(bpy)(2)Ru(II)(L(0))](2+) ? [(bpy)(2)Ru(II)(L(?-))](+) ? [(bpy)(2)Ru(II)(L(2-))](0). The differences between the O and S containing compounds are rather small in comparison to the effects of the ancillary ligands, acac(-) versus bpy.  相似文献   

20.
The ruthenium bis(bipyridine) complexes cis-[Ru(bpy)(2)Im(OH(2))](2+), cis-[Ru(bpy)(2)(Im)(2)](2+), cis-[Ru(bpy)(2)(N-Im)(2)](2+), cis-[Ru(dmbpy)(2)Im(OH(2))](2+), cis-[Ru(dmbpy)(2)(N-Im)(OH(2))](2+)(bpy = 2,2'-bipyridine, dmbpy = 4,4'-dimethyl-2,2'-bipyridine, Im = imidazole, N-Im = N-methylimidazole), have been synthesized under ambient conditions in aqueous solution (pH 7). Their electrochemical and spectroscopic properties, absorption, emission, and lifetimes were determined and compared. The substitution kinetics of the cis-[Ru(bpy)(2)Im(OH(2))](2+) complexes show slower rates and have lower affinities for imidazole ligands than the corresponding cis-[Ru(NH(3))(4)Im(OH(2))](2+) complexes. The crystal structures of the monoclinic cis-[Ru(bpy)(2)(Im)(2)](BF(4))(2), space group = P2(1)/a, Z = 4, a = 11.344(1) ?, b = 17.499(3) ?, c = 15.114(3) ?, and beta = 100.17(1) degrees, and triclinic cis-[Ru(bpy)(2)(N-Im)(H(2)O)](CF(3)COO)(2).H(2)O, space group = P&onemacr;, Z = 2, a = 10.432(4) ?, b = 11.995(3) ?, c = 13.912(5) ?, alpha = 87.03(3) degrees, beta = 70.28(3) degrees, and gamma = 71.57(2) degrees, complexes show that these molecules crystallize as complexes of octahedral Ru(II) to two bidentate bipyridine ligands with two imidazole ligands or a water and an N-methylimidazole ligand cis to each other. The importance of these molecules is associated with their frequent use in the modification of proteins at histidine residues and in comparisons of the modified protein derivatives with these small molecule analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号