首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The hole-induced photodesorption of chemisorbed O2 from a TiO2(110) single crystal has been employed to monitor the kinetics of electron-hole pair (e-h) formation and hole trapping. Excitation is produced by 3.4 +/- 0.05 eV photons at 110 K. Two separate O2 desorption processes have been found which are characteristic of low photon fluxes and high photon fluxes. At a critical photon flux, Fhnu(crit), the slow O2 photodesorption process suddenly converts to a fast process, signaling the saturation of hole traps in the TiO2 crystal. Consequently, this allows photogenerated holes to more efficiently reach the surface, causing more rapid O2 photodesorption. The estimated bulk concentration of hole traps is approximately 2.5 x 10(18) cm(-3), involving a fraction of about 3 x 10(-5) of the atomic sites in the bulk. Both the slow and fast O2 photodesorption processes are described by a rate law that is proportional to Fhnu(1/2), indicating that the steady-state concentration of holes, [h], is governed by second-order e-h pair recombination kinetics. Effective use is made of a hole scavenger molecule, adsorbed methanol (CH3OH), to probe the role of added hole traps on the rate of the photodesorption of adsorbed O2 molecules and on the magnitude of Fhnu(crit).  相似文献   

2.
Interaction of CO adsorbed on Pt(111) with electrons and phonons is studied experimentally by means of a pump-probe experiment where CO is probed by IR + visible sum frequency generation under a pump laser intensity that allows photodesorption. Vibrational spectra of CO internal stretch are obtained as a function of pump-probe delay. A two-temperature and anharmonic coupling model is used to extract from the spectra the real time variations of CO peak frequency and dephasing time. The main conclusions are the following: (i) The CO stretch is perturbed by two low-frequency modes, assigned to frustrated rotation and frustrated translation. (ii) The frustrated rotation is directly coupled to electrons photoexcited in Pt(111) by the pump laser. (iii) There is no evidence of Pt-CO stretch excitation in the spectra. The implications for the photodesorption dynamics are discussed.  相似文献   

3.
In a recent study Redlich et al. [Redlich et al., Chem. Phys. Lett. 2006, 420, 110] measured the velocity distribution of CO molecules desorbing from a NiO(100) surface after irradiation with an ultraviolet (UV) laser pulse. Due to the complexity of the involved processes no experimental evidence on the excitation and desorption mechanism could be obtained. In recent ab initio studies Mehdaoui et al. [Mehdaoui et al., Phys. Rev. Lett. 2007, 98, 037601] have shown that a 5sigma --> 2pi* (a (3)Pi) like transition within the CO adsorbate is most likely the crucial excitation step in the CO-NiO(100) system. At first sight this seems unlikely, since the interaction of CO molecules with the NiO(100) surface is very weak (-0.30 eV) and the corresponding CO gas phase transition energy is about 1.5 eV higher than the laser pulse energy of 4.66 eV used in the experiment. In this work we give further insight into relevant electronically excited states and identify the desorption mechanism by analysing the dynamical processes after laser excitation by quantum dynamical wave packet simulations on the basis of three-dimensional (3D) ab initio potential energy surfaces. The results corroborate the so far discussed excitation mechanism, which proposes the formation of a genuine C-Ni bond as the driving force for photodesorption, as the crucial excitation step.  相似文献   

4.
For tandem mass spectrometry, the Fourier transform instrument exhibits advantages for the use of collisionally-activated dissociation (CAD). The CAD energy deposited in larger ions can be greatly increased by extending the collision time to as much as 120 s, and the efficiency of trapping and measuring CAD product ions is many times greater than that found for triple-quadrupole or magnetic sector instruments, although the increased pressure from the collision gas is an offsetting disadvantage. A novel system that uses the same laser for photodesorption of ions and their subsequent photodissociation can produce complete dissociation of larger oligopeptide ions and unusually abundant fragment ions. In comparison to CAD, much more internal energy can be deposited in the primary ions using 193-nm photons, sufficient to dissociate peptide ions of m/z > 2000. Mass spectra closely resembling ion photodissociation spectra can also be obtained by' neutral photodissociation (193-nm laser irradiation of the sample) followed by ion photodesorption.  相似文献   

5.
Identification of charge transfer and trapping sites on semiconducting oxide surfaces is of fundamental importance in furthering the field of heterogeneous photocatalysts. Using scanning tunneling microscopy, electron energy loss spectroscopy, and photodesorption, we observed both electron trapping and hole transfer events on the (110) surface of TiO2 rutile. UV irradiation of a saturated monolayer of trimethyl acetate (TMA) on TiO2(110) at room temperature resulted in hole transfer to the carboxylate group, followed by (CH3)3C-COO bond cleavage and desorption of CO2 and isobutene/isobutane. Hole transfer to TMA proceeded in the absence of a gas-phase electron scavenger (which is typically O2) because the accompanying photogenerated electrons could be trapped at the surface as Ti3+ cations bound to bridging OH groups. The extent of electron trapping, gauged by electron spectroscopy, correlated directly with the yields of photodesorption fragments resulting from the hole transfer channel. Charge at the Ti3+ sites was titrated in the dark via a reaction between O2 and the Ti3+-OH groups.  相似文献   

6.
Developing a mechanistic interpretation of complex dynamical chemical systems such as halogen photoetching requires correlated microscopic data on the kinetics, dynamics, surface composition and microstructure of prototypical and real surfaces. This overview is concerned especially with two important variables which significantly influence the microetching mechanisms and structures; (I) the role of electronic point defects induced by substitutional doping in producing site-specific reactions and, (II) the quantum mechanical enhancement of chemical reaction induced by uv-radiation at low fluences and temperatures.

From uv-photoetching and photodesorption studies of heavily doped Si(100) and Si(111) with chlorine beams at low laser fluences, the mechanisms of photostimulated desorption is analyzed based primarily on the kinetics of chemisorption and surface layer microanalysis obtained from core-level photoemission. These results are coupled with time-of-flight dynamical measurements on the energetics of the photodesorption process to provide a more unified understanding of anisotropic photon-stimulated microetching.

Substantial alterations of the etching mechanisms occur when selective surface molecular processes are driven quantum mechanically by low level photon radiation rather than thermally. This is clearly reflected in the dynamical mechanisms for photodesorption which become strongly site- and atomic process-selective illustrated by the energetics of the processes. Creation and transport of charged carriers, especially at high doping levels by photoionization coupled with field-induced charge transport, introduces new reaction channels into the surface chemistry leading to resultant changes in the microstructure on an atomic scale. The results from the kinetics, velocity dynamics and film composition measurements are combined in terms of the dependency of chlorine adsorption on doping at high carrier levels and low laser fluences, to provide an improved interpretation of the anisotropic microetching in terms of field-promoted electron-hole activation.  相似文献   


7.
Molecular dynamics (MD) calculations have been performed to study the ultraviolet (UV) photodissociation of D(2)O in an amorphous D(2)O ice surface at 10, 20, 60, and 90 K, in order to investigate the influence of isotope effects on the photodesorption processes. As for H(2)O, the main processes after UV photodissociation are trapping and desorption of either fragments or D(2)O molecules. Trapping mainly takes place in the deeper monolayers of the ice, whereas desorption occurs in the uppermost layers. There are three desorption processes: D atom, OD radical, and D(2)O molecule photodesorption. D(2)O desorption takes places either by direct desorption of a recombined D(2)O molecule, or when an energetic D atom produced by photodissociation kicks a surrounding D(2)O molecule out of the surface by transferring part of its momentum. Desorption probabilities are calculated for photoexcitation of D(2)O in the top four monolayers and are compared quantitatively with those for H(2)O obtained from previous MD simulations of UV photodissociation of amorphous water ice at different ice temperatures [Arasa et al., J. Chem. Phys. 132, 184510 (2010)]. The main conclusions are the same, but the average D atom photodesorption probability is smaller than that of the H atom (by about a factor of 0.9) because D has lower kinetic energy than H, whereas the average OD radical photodesorption probability is larger than that of OH (by about a factor of 2.5-2.9 depending on ice temperature) because OD has higher translational energy than OH for every ice temperature studied. The average D(2)O photodesorption probability is larger than that of H(2)O (by about a factor of 1.4-2.3 depending on ice temperature), and this is entirely due to a larger contribution of the D(2)O kick-out mechanism. This is an isotope effect: the kick-out mechanism is more efficient for D(2)O ice, because the D atom formed after D(2)O photodissociation has a larger momentum than photogenerated H atoms from H(2)O, and D transfers momentum more easily to D(2)O than H to H(2)O. The total (OD + D(2)O) yield has been compared with experiments and the total (OH + H(2)O) yield from previous simulations. We find better agreement when we compare experimental yields with calculated yields for D(2)O ice than when we compare with calculated yields for H(2)O ice.  相似文献   

8.
The desorption of CO from a Pd(111) surface following absorption of 120 fs pulses of 780 nm light occurs on two distinct and well-separated time scales. Two-pulse correlation measurements show a fast subpicosecond decay followed by a slower, approximately 40 ps decay. Simulations based on the two-temperature model of electron and phonon heat baths within the substrate, and an empirical friction model to treat coupling to the adsorbate, support the assignment of the desorption mechanism as an electron-mediated process. The photodesorption yield and overall width of the temporal response exhibit a marked dependence on the initial surface temperature in the 100-375 K range despite the much higher transient electronic temperatures (approximately 7000 K) achieved. The observed temperature dependences can be attributed directly to variations in the initial temperature within the frictional coupling picture. Simulations of this extended data set imply that the activation barrier to photoinduced desorption is equal in magnitude to that derived from thermal desorption experiments for this system within the limits of a one-dimensional Arrhenius desorption model. The simulations also imply that the slower decay is not the result of phonon-driven desorption. Though we cannot unambiguously determine the strength of the adsorbate-phonon coupling, our results suggest that its role is to moderate the degree of the adsorbate excitation.  相似文献   

9.
The photodesorption of O(2) from TiO(2)(110) has been found to exhibit fractal kinetic behavior. The rate coefficient for photodesorption is measured throughout the entire experiment and is shown to decrease by a factor of approximately 100 over a time period of approximately 250 s. A model is proposed in which the electrons associated with O-vacancy defects on the surface percolate from vacancy site to vacancy site via the filled orbitals at these sites to neutralize photoproduced holes. This electron percolation, causing electron-hole recombination, reduces the efficiency of charge transfer between a photoproduced hole and an O(2)(-)(a) species localized at a vacancy defect site, causing the rate of O(2) photodesorption to follow a fractal rate law. We postulate that the fractal electron conduction path across the surface is one-dimensional.  相似文献   

10.
The photodesorption of H(2)O in its vibrational ground state, and of OH radicals in their ground and first excited vibrational states, following 157 nm photoexcitation of amorphous solid water has been studied using molecular dynamics simulations and detected experimentally by resonance-enhanced multiphoton ionization techniques. There is good agreement between the simulated and measured energy distributions. In addition, signals of H(+) and OH(+) were detected in the experiments. These are inferred to originate from vibrationally excited H(2)O molecules that are ejected from the surface by two distinct mechanisms: a direct desorption mechanism and desorption induced by secondary recombination of photoproducts at the ice surface. This is the first reported experimental evidence of photodesorption of vibrationally excited H(2)O molecules from water ice.  相似文献   

11.
Three specific model systems, HCo(CO)4, Na · NH3, and NO/Pt(111), are used to extend the strategy of vibrationally mediated photodissociations of organometallics, via small clusters of metal atoms and small molecules, to photodesorption of small molecules from metal surfaces. All systems and strategies are similar with respect to breaking metal-ligand bonds by means of infrared IR and visible or ultraviolet UV photons. Specific properties of the systems call, however, for different implementations of the overall tools. In the case of HCo(CO)4, traditional continuous wave (CW ) IR + UV 2-photon excitations enhance the rates of HCo bond homolysis. A detailed analysis discovers three effects which result from Franck-Condon transitions in the domains of vibrationally excited wave functions: (i) ultrafast (≈ 20 fs) bond rupture starting from the steeply repulsive wall of the potential energy surface of the excited singlet state; (ii) efficient fast (≈ 200 fs) predissociation via tunneling through neighboring potential barriers; and (iii) decreasing contributions from indirect dissociations via slow (≈ 46 ps) intersystem crossing induced by spin-orbit coupling. In the case of Na · NH3, we suggest a vibrationally mediated pump-and-dump scheme, similar to the strategy of Tannor, Rice, and Kosloff, with proper control of the delay (ca. 70 fs) between ultrashort (ca. 30 fs) pump-and-dump laser pulses. Ultimately, this strategy shifts specific lobes of the vibrationally excited wave packets into a steeply repulsive wall of the potential energy surface of the electronic ground state, with subsequent fast (ca. 100 fs) ruptures of the NA(SINGLEBOND)NH3 bond, similar to effect (i) for HCo(CO)4. Finally, we show that a similar, vibrationally mediated pump-and-dump scheme may also support photodesorption of NO from Pt(111), with an intrinsic relaxation step for the electronically excited system NO/Pt(111) instead of active pump-and-dump control for Na · NH3. All strategies are simulated by fast Fourier transform propagations of representative wave packets on two potential energy surfaces. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Gaseous molecules and ions, and even dust grains, can accumulate charge in the interstellar medium (ISM) by harvesting the energy of UV photons, cosmic rays, helium ions and metastable atoms. This Perspective views the various modes of gas-phase formation of multiply-charged cations and the possible impact of their reactions on the chemical and ionization structure of the ISM, in the light of what is still very limited knowledge. Emphasis is given to gas-phase reactions of multiply-charged cations with atoms, molecules and electrons that lead to charge reduction, charge separation and chemical bond formation and these are examined for multiply-charged atoms, small molecules, hydrocarbons, polycyclic aromatic hydrocarbons and fullerenes, primarily as dications but also as a function of charge state. The increased electrostatic interaction due to multiple charge is seen to promote bonding to individual charge sites on large molecules (e.g. fullerenes) and allow ensuing "surface" chemistry under the influence of Coulomb repulsion. The unique ability of multiply charged cations to undergo charge separation reactions, either unimolecular or bimolecular, can feature in the production in the ISM of internally cold, but translationally hot, cations of lower charge state or hot atoms that may provide the driving force for subsequent chemical reactions in what is otherwise an ultracold environment. Available chemical kinetic models that account for the role of multiply-charged ions in the ISM are few and of limited scope and the observation of these ions in the ISM has remained elusive.  相似文献   

13.
It is generally held that radicals form and participate in heterogeneous photocatalytic processes on oxide surfaces, although understanding the mechanistic origins and fates of such species is difficult. In this study, photodesorption and thermal desorption techniques show that acetone is converted into acetate on the surface of TiO2(110) in a two-step process that involves, first, a thermal reaction between acetone and coadsorbed oxygen to make a surface acetone-oxygen complex, followed second by a photocatalytic reaction that ejects a methyl radical from the surface and converts the acetone-oxygen complex into acetate. Designation of the photodesorption species to methyl radicals was confirmed using isotopically labeled acetone. The yield of photodesorbed methyl radicals correlates well with the amount of acetone depleted and with the yield of acetate left on the surface, both gauged using postirradiation temperature programmed desorption (TPD). The thermal reaction between adsorbed acetone and oxygen to form the acetone-oxygen complex exhibits an approximate activation barrier of about 10 kJ/mol. A prerequisite to this reaction is the presence of surface Ti3+ sites that enable O2 adsorption. Creation of these sites by vacuum reduction of the surface prior to acetone and oxygen coadsorption results in an initial spike in the acetone photooxidation rate, but replenishment of these sites by photolytic means (i.e., by trapping excited electrons at the surface) appears to be a slow step in a sustained reaction. Evidence in this study for the ejection of organic radicals from the surface during photooxidation catalysis on TiO2 provides support for mechanistic pathways that involve both adsorbed and nonadsorbed species.  相似文献   

14.
Designed peptides derived from the islet amyloid polypeptide (IAPP) cross-amyloid interaction surface with Aβ (termed interaction surface mimics or ISMs) have been shown to be highly potent inhibitors of Aβ amyloid self-assembly. However, the molecular mechanism of their function is not well understood. Using solution-state and solid-state NMR spectroscopy in combination with ensemble-averaged dynamics simulations and other biophysical methods including TEM, fluorescence spectroscopy and microscopy, and DLS, we characterize ISM structural preferences and interactions. We find that the ISM peptide R3-GI is highly dynamic, can adopt a β-like structure, and oligomerizes into colloid-like assemblies in a process that is reminiscent of liquid–liquid phase separation (LLPS). Our results suggest that such assemblies yield multivalent surfaces for interactions with Aβ40. Sequestration of substrates into these colloid-like structures provides a mechanistic basis for ISM function and the design of novel potent anti-amyloid molecules.  相似文献   

15.
Designed peptides derived from the islet amyloid polypeptide (IAPP) cross‐amyloid interaction surface with Aβ (termed interaction surface mimics or ISMs) have been shown to be highly potent inhibitors of Aβ amyloid self‐assembly. However, the molecular mechanism of their function is not well understood. Using solution‐state and solid‐state NMR spectroscopy in combination with ensemble‐averaged dynamics simulations and other biophysical methods including TEM, fluorescence spectroscopy and microscopy, and DLS, we characterize ISM structural preferences and interactions. We find that the ISM peptide R3‐GI is highly dynamic, can adopt a β‐like structure, and oligomerizes into colloid‐like assemblies in a process that is reminiscent of liquid–liquid phase separation (LLPS). Our results suggest that such assemblies yield multivalent surfaces for interactions with Aβ40. Sequestration of substrates into these colloid‐like structures provides a mechanistic basis for ISM function and the design of novel potent anti‐amyloid molecules.  相似文献   

16.
Increasing atmospheric CO(2) levels have generated much concern, driving the ongoing carbon sequestration effort. A compelling CO(2) sequestration option is its photocatalytic conversion to hydrocarbons, for which the use of solar irradiation represents an ultimate solution. Here we report a new strategy of using surface-functionalized small carbon nanoparticles to harvest visible photons for subsequent charge separation on the particle surface in order to drive the efficient photocatalytic process. The aqueous solubility of the catalysts enables photoreduction under more desirable homogeneous reaction conditions. Beyond CO(2) conversion, the nanoscale carbon-based photocatalysts are also useful for the photogeneration of H(2) from water under similar conditions.  相似文献   

17.
Atomic carbon, a reactive intermediate abundant in the interstellar medium (ISM) can participate in various energetically demanding reactions in its extremely long living (69 min) first excited singlet state ((1)D). Several studies on reactions of oxygen containing species with carbon atoms have been reported, however mechanistic details of the title reaction remain obscure. We report here quantum chemical studies on reactions of methanol with (3)P and (1)D carbon atoms at the CCSD(T)/cc-pVTZ level of theory, with which experimentally well known facile CO production, intermolecular acetaldehyde formation, and intermolecular dimethoxymethane production mechanisms are explained. Energetics of the fragmentation, O-H insertion, C-H insertion, and O-C insertion channels on the triplet and singlet surfaces are studied. The CO production mechanism by C ((1)D) is identified as an oxygen abstraction and a triplet PES seems non-operative. Presenting novel features for the intermolecular reaction channels, current findings may be applicable to C + ROR reactions.  相似文献   

18.
An understanding of the interaction between Zn(2)GeO(4) and the CO(2) molecule is vital for developing its role in the photocatalytic reduction of CO(2). In this study, we present the structure and energetics of CO(2) adsorbed onto the stoichiometric perfectly and the oxygen vacancy defect of Zn(2)GeO(4) (010) and (001) surfaces using density functional theory slab calculations. The major finding is that the surface structure of the Zn(2)GeO(4) is important for CO(2) adsorption and activation, i.e., the interaction of CO(2) with Zn(2)GeO(4) surfaces is structure-dependent. The ability of CO(2) adsorption on (001) is higher than that of CO(2) adsorption on (010). For the (010) surface, the active sites O(2c)···Ge(3c) and Ge(3c)-O(3c) interact with the CO(2) molecule leading to a bidentate carbonate species. The presence of Ge(3c)-O(2c)···Ge(3c) bonds on the (001) surface strengthens the interaction of CO(2) with the (001) surface, and results in a bridged carbonate-like species. Furthermore, a comparison of the calculated adsorption energies of CO(2) adsorption on perfect and defective Zn(2)GeO(4) (010) and (001) surfaces shows that CO(2) has the strongest adsorption near a surface oxygen vacancy site, with an adsorption energy -1.05 to -2.17 eV, stronger than adsorption of CO(2) on perfect Zn(2)GeO(4) surfaces (E(ads) = -0.91 to -1.12 eV) or adsorption of CO(2) on a surface oxygen defect site (E(ads) = -0.24 to -0.95 eV). Additionally, for the defective Zn(2)GeO(4) surfaces, the oxygen vacancies are the active sites. CO(2) that adsorbs directly at the Vo site can be dissociated into CO and O and the Vo defect can be healed by the oxygen atom released during the dissociation process. On further analysis of the dissociative adsorption mechanism of CO(2) on the surface oxygen defect site, we concluded that dissociative adsorption of CO(2) favors the stepwise dissociation mechanism and the dissociation process can be described as CO(2) + Vo → CO(2)(δ-)/Vo → CO(adsorbed) + O(surface). This result has an important implication for understanding the photoreduction of CO(2) by using Zn(2)GeO(4) nanoribbons.  相似文献   

19.
Thin films of undoped and Sb-doped SnO2 have been prepared by a sol-gel dip-coating technique. For the high doping level (2–3 mol% Sb) n-type degenerate conduction is expected, however, measurements of resistance as a function of temperature show that doped samples exhibit strong electron trapping, with capture levels at 39 and 81 meV. Heating in a vacuum and irradiation with UV monochromatic light (305 nm) improves the electrical characteristics, decreasing the carrier capture at low temperature. This suggests an oxygen related level, which can be eliminated by a photodesorption process. Absorption spectral dependence indicates an indirect bandgap transition with Eg 3.5 eV. Current-voltage characteristics indicate a thermionic emission mechanism through interfacial states.  相似文献   

20.
The rate of CO oxidation has been characterized on the stepped Pt(411) surface for oxygen pressures up to 0.002 Torr, over the 100-1000 K temperature range. CO oxidation was characterized using both temperature-programmed reaction spectroscopy (TPRS) and in situ soft X-ray fluorescence yield near-edge spectroscopy (FYNES). New understanding of the important role surface defects play in accelerating CO oxidation for oxygen pressure above 10(-5) Torr is presented in this paper for the first time. For saturated monolayers of CO, the oxidation rate increases and the activation energy decreases significantly for oxygen pressures above 10(-5) Torr. This enhanced CO oxidation rate is caused by a change in the rate-limiting step to a surface reaction limited process above 10(-5) Torr oxygen from a CO desorption limited process at lower oxygen pressure. For example, in oxygen pressures above 0.002 Torr, CO(2) formation begins at 275 K even for the CO saturated monolayer, which is well below the 350 K onset temperature for CO desorption. Isothermal kinetic measurements in flowing oxygen for this stepped surface indicate that activation energies and preexponential factors depend strongly on oxygen pressure, a factor that has not previously been considered critical for CO oxidation on platinum. As oxygen pressure is increased from 10(-6) to 0.002 Torr, the oxidation activation energies for the saturated CO monolayer decrease from 24.1 to 13.5 kcal/mol for reaction over the 0.95-0.90 ML CO coverage range. This dramatic decrease in activation energy is associated with a simple increase in oxygen pressure from 10(-5) to 10(-3) Torr. Activation energies as low as 7.8 kcal/mol were observed for oxidation of an initially saturated CO layer reacting over the 0.4-0.25 ML coverage range in oxygen pressure of 0.002 Torr. These dramatic changes in reaction mechanism with oxygen pressure for stepped surfaces are consistent with mechanistic models involving transient low activation energy dissociation sites for oxygen associated with step sites. Taken together these experimental results clearly indicate that surface defects play a key role in increasing the sensitivity of CO oxidation to oxygen pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号