首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, Ga‐doped ZnO thin films were prepared using sol–gel technique via spin‐coating method. The effect of Ga‐doping dopant (0, 1, 2 and 3 at.%) on microstructural, optical, electrical and photoelectrochemical (PEC) characteristics have been investigated. The spin‐coating was repeated six times, and as‐obtained thin films were then annealed at 500 °C for 1 h in vacuum. After annealing, all samples revealed single phase of hexagonal ZnO polycrystalline structure with a main peak of (002) in X‐ray diffraction (XRD) pattern. Raman spectra show that the vibration strength of E2 is highly decreased by Ga doping. Thicknesses of all samples were ~300 nm measured via scanning electron microscopy (SEM) cross‐section images and alpha‐step. The optical band gap and resistivity of samples were in the range of 3.24 to 3.28 eV and 102 to 9 Ohm cm, respectively. Resulting from PEC response, the 2 at.% Ga‐doped ZnO thin film has a better PEC performance with photocurrent density of ~0.14 mA/cm2 at 0.5 V versus saturated calomel electrode (SCE) under illumination with the intensity of 100 mW/cm2. This value was about seven times higher than the un‐doped film (reference sample). Observed higher photocurrent density was likely because of a suitable Ga‐doping concentration causing a lower resistivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The elastic modulus El of crystalline regions of poly(butylene terephthalate) in the direction parallel to the chain axis has been measured by the x-ray diffraction method. Values of El for the (1 04) planes of the α- and β-form crystal modifications were 13.5 X 104 and 21.0 X 104 kg/cm2, respectively. These values of El are very low compared with that of polyethylene terephthalate (110 X 104 kg/cm2). The results are discussed in terms of the molecular conformation in the crystalline regions.  相似文献   

3.
Annealing of poly(butylene terephthalate) (PBT) was studied by differential scanning calorimetry (DSC) and small angle X‐ray scattering (SAXS) measurement. A PBT sample was annealed at a recrystallization temperature where recrystallization occurs with a maximum rate in the heating process of the sample. In the subsequent annealing steps, the annealed sample was annealed repeatedly at the recrystallization temperatures, and the stepwise annealing sample was obtained. Peak melting temperature (Tm) and sharpness of DSC peak of the stepwise annealing sample increased with the annealing step. A high melting‐temperature sample was obtained in a short time, and Tm increased up to 238.5°C which is higher than all the Tm values that appear in the literature. The long period calculated from SAXS curves of the stepwise annealing sample increased with the annealing step. The increase of crystallite size and perfection of the crystal in the stepwise annealing process is suggested. Annealing experiment indicated that T°m should be higher than about 235°C. Tm increased linearly with the annealing temperature of the final step in the stepwise annealing (Ta). The equilibrium melting temperature (T°m) for PBT was estimated to be 247°C by the application of a Hoffman–Weeks plot to the relation between Tm vs. Ta. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2420–2429, 1999  相似文献   

4.
CuInSe2 (CIS) films with good crystalline quality were synthesized by electrodeposition followed by annealing in Se vapor at 530 oC. The morphology, composition, crystal structure, optical and electrical properties of the CIS films were investigated by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, Raman spectroscopy, UV-VIS-NIR spectroscopy, and admittance spectroscopy. The results revealed that the annealed CIS films had chalcopyrite structure and consisted of relatively large grains in the range of 500-1000 nm and single grain of films extend usually through the whole film thickness. The band gap of CIS films was 0.98 eV and carrier concentration was in the order of 1016 cm-3 after etching the Cu-Se compounds on the film surface. Solar cells with the structure of AZO/i-ZnO/CdS/CIS/Mo/glass were fabricated. Current density vs. voltage test under standard reported condition showed the solar cells with an area of 0.2 cm2 had a conversion efficiency of 0.96%. The underlying physics was also discussed.  相似文献   

5.
New dithienothiophene‐containing conjugated polymers, such as poly(2,6‐bis(2‐thiophenyl‐3‐dodecylthiophene‐2‐yl)dithieno[3,2‐b;2′,3′‐d]thiophene, 4 and poly(2,6‐bis (2‐thiophenyl‐4‐dodecylthiophene‐2‐yl)dithieno[3,2‐b;2′,3′‐d]thiophene, 8 have been successfully synthesized via Stille coupling reactions using dodecyl‐substituted thiophene‐based monomers, bistributyltin dithienothiophene, and bistributyltin bithiophene; these polymers have been fully characterized. The main difference between the two polymers is the substitution position of the dodecyl side chains in the repeating group. Grazing‐incidence X‐ray diffraction (GI‐XRD) gave clear evidence of edge‐on orientation of polycrystallites to the substrate. The semiconducting properties of the two polymers have been evaluated in organic thin film transistors (OTFTs). The two conjugated polymers 4 and 8 exhibit fairly high hole carrier mobilities as high as μave = 0.05 cm2/Vs (ION/OFF = 3.42 × 104) and μave = 0.01 cm2/Vs, (ION/OFF = 1.3 × 105), respectively, after thermal annealing process. The solvent annealed films underwent reorganization of the molecules to induce higher crystallinity. Well‐defined atomic force microscopy (AFM) topography supported a significant improvement in TFT device performance. The hole carrier mobilities of the solvent annealed films are comparable to those obtained for a thermally annealed sample, and were one‐order higher than those obtained with a pristine sample. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

6.
The crystal structure of nylon 3 was studied, and four crystalline modifications were observed. Modification I, as determined from the x-ray diffraction pattern of drawn fibers, is similar to the α crystal structure of nylon 6. The unit cell is monoclinic; a = 9.33 Å, b = 4.78 Å, (fiber identity period), c = 8.73 Å, and β = 60°. The theoretical density for nylon 3 with four monomeric units in the unit cell is 1.39 g/cm3, and the observed density is 1.33 g/cm3. The space group is P21. The nylon 3 chains are in the extended planar zigzag conformation. Although other odd-numbered nylon form triclinic or pseudohexagonal crystals when oriented, drawn nylon 3 crystals are monoclinic. In addition to modification I, modifications II, III, and IV were studied. Lattice spacings of modifications II and III are equal to those of modification I. However x-ray diffraction intensities are different. Infrared spectra of those forms indicate an extended planar zigzag conformation of the chains. Modification IV is thought to correspond to the so-called smectic hexagonal form. No γ crystals were found, and it appears that polyamide chains with short sequences of methylene groups cannot form crystals of this type.  相似文献   

7.
The metal-ferroelectric-semiconductor (MFS) heterostructure has been fabricated using Bi3.25La0.75Ti3O12 (BLT) as a ferroelectric layer by sol-gel processing. The effect of annealing temperature on phase formation and electrical characteristics of Ag/BLT/p-Si heterostructure were investigated. The BLT thin films annealed at from 500°C to 650°C are polycrystalline, with no pyrochlore or other second phases. The C-V curves of Ag/BLT/p-Si heterostructure annealed at 600°C show a clockwise C-V ferroelectric hysteresis loops and obtain good electrical properties with low current density of below 2×10−8 A/cm2 within ±4 V, a memory window of over 0.7 V for a thickness of 400 nm BLT films. The memory window enlarges and the current density reduces with the increase of annealing temperature, but a annealing temperature over 600°C is disadvantageous for good electrical properties.  相似文献   

8.
Carbon steels (CSs) were anodized in an ethylene glycol solution containing 3 vol.% H2O and 0.1 m NH4F to coat with nanotube arrays film. The as anodized nanotube arrays film were annealed in argon atmosphere at various temperatures ranging from 250 to 550 °C for 4 h. The morphology and crystal phases of the film developed after annealing processes were examined using field emission scanning electron microscopy, X‐ray diffraction. Morphology transforms from nanobube arrays to nanotube bundles at 250 °C, to nanobube bundles with nanoflakes at 350 and 450 °C, to nanotube bundles with nanobelts at 550 °C. Amorphous transformed completely into maghemite at 350 °C and hematite with minor magnetite at 450 and 550 °C. Diffuse reflectance ultraviolet and visible spectra revealed iron oxide nanotube film annealed at 350 °C, or higher than 350 °C behaved tremendous absorbance ability in visible spectra range. Mott–Schottky analysis and linear scan voltammetry were performed in 1 m NaOH to show that iron oxide nanotube film annealed at 450 °C exhibited best charge carrier transfer ability upon illumination and superior photoelectrochemical properties compared with the films annealed at other temperatures. The film annealed at 450 °C displayed the photocurrent density of 0.13 mA cm?2 at 0.2 VAg/AgCl, but the film annealed at other temperatures with the photocurrent densities of lower than 0.05 mA cm?2 at 0.2 VAg/AgCl. The morphology and phase transform of iron oxide nanotube film at different annealing temperature results in the change of their photoelectrochemical properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
The improvement in the oxygen‐barrier properties of poly(ethylene terephthalate) (PET) by orientation and heat setting was examined. Orientation was carried out at 65 °C by constrained uniaxial stretching to a draw ratio of about 4. Heat setting was performed at temperatures from 90 to 160 °C with the specimen taut. Orientation decreased the permeability of PET to almost one‐third that of the unoriented, amorphous polymer because of decreases in both the diffusion coefficient and the solubility coefficient. The proposed two‐phase model for oriented PET consisted of a permeable isotropic amorphous phase (density = 1.335 g/cm3) with ethylene linkages predominately in the gauche conformation and an impermeable oriented phase (density = 1.38 g/cm3) with ethylene linkages that had transformed from the gauche conformation to the trans conformation during stretching. Chain segments in the trans conformation did not possess crystalline order; instead, they were viewed as forming an ordered amorphous phase. Crystallization by heat setting above the glass‐transition temperature did not dramatically affect the permeability. However, a decrease in the diffusion coefficient, offset by an increase in the solubility coefficient, indicated that crystallization affected the barrier properties of the permeable amorphous phase. Analysis of the barrier data, assuming a two‐phase model with variable density for both the permeable and impermeable phases, revealed that the impermeable phase density increased during crystallization, approaching a value of 1.476 g/cm3. This value is consistent with previous measurements of the density of the defective crystalline phase in PET. The density of the permeable amorphous phase decreased concurrently to about 1.325 g/cm3, indicating the appearance of additional free volume. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1679–1686, 2000  相似文献   

10.
Highly (111) oriented, phase-pure perovskite Pb(Zr0.3Ti0.7)O3 (or PZT 30/70) thin films were deposited on single-crystal, (0001) wurtzite GaN/sapphire substrates using the sol-gel process and rapid thermal annealing. The phase, crystallinity, and stoichiometry of annealed PZT films were evaluated by X-ray diffraction and Rutherford backscattering spectroscopy. The atomic force microscopy revealed a smooth PZT surface (rms roughness ∼1.5 nm) with striations and undulations possibly influenced by the nature of the underlying GaN surface. The cross-sectional field-emission scanning electron microscopic images indicated a sharper PZT/GaN interface compared to that of sol-gel derived PZT on (111) Pt/TiO2/SiO2/(100) Si substrates. The capacitance-voltage (C-V) characteristics for PZT in the Pt/PZT/GaN (metal-ferroelectric-semiconductor or MFS) configuration were evaluated as a function of annealing temperature and applied voltage. The observed C-V hysteresis stemmed from trapped charge at defect sites within PZT. Also, the lower capacitance density (C/A = 0.35 μF/cm2, where A is the area of an electrode) and remnant polarization (P r ∼ 4 μC/cm2) for PZT in the MFS configuration, compared to the values for PZT in the MFM configuration (Pt/PZT/Pt), were attributed to the high depolarization field within PZT.  相似文献   

11.
Polyethylene crystals of different degrees of perfection were annealed at 5.1 kb pressure for 20 hr at various temperatures and analyzed by electron microscopy, thermal analysis, and density determination. No annealing took place until the temperature was close to the melting point of the starting material. Up to 235°C increasing solidstate annealing was observed. Mixed crystals of up to 0.989 g/cm3 density and 1500 Å thickness in the chain direction could be produced. At slightly higher temperature recrystallization to extended-chain crystals rather than annealing occurred. The annealing process at atmospheric pressure seems to be similar in nature, but takes much longer for comparable perfection. From a comparison of annealing and crystallization it is concluded that polymer crystallization goes through a stage of internally imperfect order during which most of the observed chain extension occurs. Estimates of this outer imperfect layer of a growing crystal place its depth at 30,000 Å.  相似文献   

12.
This study aimed to improve the performance of the activated carbon-based cathode by increasing the Li content and to analyze the effect of the combination of carbon and oxidizing agent. The crystal structure and chemical structure phase of Li-high surface area activated carbon material (Li-HSAC) was analyzed by X-ray diffraction (XRD) and Raman spectroscopy, the surface state and quantitative element by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and the surface properties with pore-size distribution by Brunauer–Emmett–Teller (BET), Barrett–Joyner–Halenda (BJH) and t-plot methods. The specific surface area of the Li-YP80F is 1063.2 m2/g, micropore volume value is 0.511 cm3/g and mesopore volume is 0.143 cm3/g, and these all values are higher than other LiOH-treated carbon. The surface functional group was analyzed by a Boehm titration, and the higher number of acidic groups compared to the target facilitated the improved electrolyte permeability, reduced the interface resistance and increased the electrochemical properties of the cathode. The oxidizing agent of LiOH treated high surface area of activated carbon was used for the cathode material for EDLC (electric double layer capacitor) to determine its electrochemical properties and the as-prepared electrode retained excellent performance after 10 cycles and 100 cycles. The anodic and cathodic peak current value and peak segregation of Li-YP80F were better than those of the other two samples, due to the micropore-size and physical properties of the sample. The oxidation peak current value appeared at 0.0055 mA/cm2 current density and the reduction peak value at –0.0014 mA/cm2, when the Li-YP80F sample used to the Cu-foil surface. The redox peaks appeared at 0.0025 mA/cm2 and –0.0009 mA/cm2, in the case of using a Nickel foil, after 10 cycling test. The electrochemical stability of cathode materials was tested by 100 recycling tests. After 100 recycling tests, peak current drop decreased the peak profile became stable. The LiOH-treated high surface area of activated carbon had synergistically upgraded electrochemical activity and superior cycling stability that were demonstrated in EDLC.  相似文献   

13.
The most striking feature of the mechanism of thermal annealing of doubly oriented samples of low-density polyethylene (LDPE) and probably of high-density polyethylene (HDPE) is a progressive tilt of lamellar crystals around their crystallographic b axis. Such a rotation does not occur on thermal annealing in doubly oriented nylons. However, this rotation mechanism occurs during the thermal annealing of doubly oriented samples of nylon 11 in contact with a solvent below its dissolution temperature. As for oriented samples of polyethylene (PE), a correlation between the changes of macroscopic dimensions and long spacing obtained from the small-angle x-ray pattern is difficult to establish. In doubly oriented samples of nylon 11, the basal faces of the lamellar crystals are parallel to the a axis of the unit cell. Nevertheless, simple Miller indices cannot be assigned to the basal planes of the lamellae. On thermal annealing in formic acid, the basal planes of the lamellar crystals are, in some cases, parallel to (00l) planes. Annealing in formic acid at room temperature induces a phase transition: the chain c axis remains oriented along the rolling direction and the (00l) planes become parallel to the limiting planes of the lamellar crystals. Bulk doubly oriented samples of nylon 11 annealed in formic acid just below the “dissolution temperature” have the same texture of orientation as filter mats of single crystals grown from dilute solution; moreover, as these bulk specimens remain doubly oriented, they can be used for further physicochemical investigations. The usual interpretation of the small-angle x-ray pattern is also discussed on the basis of the results reported in this paper.  相似文献   

14.
Small-angle x-ray scattering studies were made on bulk-crystallized samples and annealed oriented films of TMPS. The temperature dependence of the small-angle scattering was determined over a range of annealing conditions. The effect of sample molecular weight on the small-angle peaks was also studied. The peak intensity, measured at room temperature after annealing, was strongly dependent on the annealing conditions. The position of the peak gradually moved to smaller angles (larger d spacings) as the annealing temperature was raised. Surface free energies were deduced from the melting point dependence of the crystallite size. This surface energy was found to increase with molecular weight in accord with values deduced for spherulite growth rate-temperature dependence.  相似文献   

15.
The unit cell of an alternating copolymer of ethylene and tetrafluoroethylene was determined by x-ray diffraction. In spite of uncertainties due to irregularities in the chain structure and a low level of crystallinity, a reasonable unit cell and structure was derived which gives a calculated crystalline density of 1.9 g/cm3. The unit cell is believed to be either orthorhombic or monoclinic with the following parameters: a = 9.6 Å, b = 9.25 Å, c = 5.0 Å, (γ = 96°). The molecular conformation is that of the extended zigzag, and the molecular packing appears to be orthorhombic, each molecule having four nearest neighbors with the CH2 groups of one chain adjacent to the CF2 groups of the next.  相似文献   

16.
Two regioregular poly(p-phenyleneethynylene-alter-m-phenyleneethynylene)s bearing (−)-trans-myrtanoxyl side groups with different substitution patterns were designed and synthesized, e.g. Myr-PMPE-1 and Myr-PMPE-2. In Myr-PMPE-1, the side chiral groups are distributed uniformly along the backbone. In Myr-PMPE-2, the distribution of the side chiral groups is alternatively crowded and loose. Both of these two polymers show no CD signal in solutions because of their good solubility. The investigations of chiroptical properties of these two polymers were carried out in the form of spin-coated films. The films were annealed above the glass temperature of the corresponding polymer, and the effects of annealing temperature and time on the properties of the films were investigated by UV-Vis absorption, fluorescence and circular dichroism spectra. The results show that annealing treatment had no significant effect on the properties of Myr-PMPE-1, including UV-Vis absorption, fluorescence and optical activity. The maximum absolute value of dissymmetry factor (|g max|) was 1.62 × 10−4. On the other hand, annealing treatment significantly affected the properties of Myr-PMPE-2. Without annealing or being annealed below 100°C, Myr-PMPE-2 films show almost no Cotton effect. In contrast, when annealed above 120°C, the absorption and emission of Myr-PMPE-2 films slightly red shifted with increasing annealing temperature and annealing time. Most importantly, the intensity of CD signals increased significantly and the optical activity of Myr-PMPE-2 films markedly increased. After annealing at 140°C for 4 h, the |g max| of Myr-PMPE-2 films was increased up to 3.07 × 10−3, about one order of magnitude higher than that of Myr-PMPE-1 films. __________ Translated from Acta Polymeric Sinica, 2008, 3 (in Chinese)  相似文献   

17.
The changes in the fibrillar and the lamellar structure in nylon 6 fibers resulting from drawing and annealing were studied by a detailed analysis of their two-dimensional small-angle scattering patterns. The scattering object that gives to rise the diffuse equatorial scattering in the angular range of Q = 0.02 to 0.3 Å−1 is assumed to be a fibril. There are two distinct regimes in the equatorial diffuse scattering. The scattering at Q < 0.1 Å−1 is dominated by scattering due to the longitudinal dimension of the fibril, and that at Q > 0.1 Å−1 to the lateral dimensions/organization of the fibril. The interfibrillar regions, unlike the interlamellar regions that are essentially made of amorphous chain segments, may have microvoids in addition to amorphous chain segments. The intensity distribution within the lamellar reflections was used to obtain the lamellar spacings and the dimension of the lamellar stacks. The length of the fibrils is between 1000 and 3000 Å, the higher values being more prevalent at lower draw ratios. The fibril length is larger than the length of the lamellar stack, and approaches the latter at higher draw ratios. Annealing does not change the lengths of the fibrils, but the length of the lamellar stack increases. The fibrils form crystalline aggregates with a coherence length of ∼200 Å at higher draw ratios. The diameter of the fibrils (50–100 Å) determined from the lamellar reflection using both the Scherrer equation and the Guinier law are consistent with the lateral size of the crystallites derived from wide-angle x-ray diffraction. The longitudinal correlation of the lamellae between the neighboring fibrils improves upon drawing and decreases upon annealing. The degree of fibrillar and lamellar orientation is about the same as the crystalline orientation. Lamellar spacing increases upon drawing (from ∼60 to 95 Å) and annealing (from ∼85 to 100 Å). This is accompanied by an increase in the width of the amorphous domains from 30 to 50 Å in drawn fibers, and from 45 to 55 Å in annealed fibers. The diameter of the fibrils decreases slightly upon drawing and increases considerably upon annealing. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
An infrared absorbance subtraction technique has been used to “isolate” bands in the composite spectrum of semicrystalline polymers according to their crystalline or amorphous character. Amorphous and crystalline spectra for annealed, melt-quenched, and solution-cast poly(ethylene terephthalate) have been separated. The spectra of the amorphous component show an increased intensity of bands associated with the trans configuration of oxygen about the C? C bond when the polymer is annealed. This increased “trans” band intensity reflects the increased proportion of trans structures as a result of annealing. The amorphous trans bands are shifted approximately 1–3 cm?1 from their positions in the crystalline “trans” spectrum. The frequency shift of these bands can be attributed to the differences in chain interactions that exist in the amorphous phase and the crystalline lattice. We have also found that under identical anealing conditions the amorphous phase of the melt-quenched polymer contains an increased intensity of conformational trans bands compared to the sample cast from solution.  相似文献   

19.
Gas barrier properties of alkylsulfonylmethyl-substituted poly(oxyalkylene)s are discussed. Oxygen permeability coefficients of three methylsulfonylmethyl-substituted poly(oxyalkylene)s, poly[oxy(methylsulfonylmethyl)ethylene] (MSE), poly[oxy(methylsulfonylmethyl)ethylene-co-oxyethylene] (MSEE), and poly[oxy-2,2-bis (methylsulfonylmethyl)trimethylene oxide] (MST) were measured. MSEE, which has the most flexible backbone of the three polymers, had an oxygen permeability coefficient at 30°C of 0.0036 × 10−13 cm3(STP)·cm/cm2·s·Pa higher than that of MSE, 0.0014 × 10−13 cm3(STP)·cm/cm2·s·Pa, because the former polymer's Tg was near room temperature. MST with two polar groups per repeat unit and the highest Tg showed the highest oxygen permeability, 0.013 × 10−13 cm3(STP) · cm/cm2·s·Pa, among the three polymers, probably because steric hindrance between the side chains made the chain packing inefficient. As the side chain length of poly[oxy(alkylsulfonylmethyl)ethylene] increased, Tg and density decreased and the oxygen permeability coefficients increased. The oxygen permeability coefficient of MSE at high humidity (84% relative humidity) was seven times higher than when it was dry because absorbed water lowered its Tg. At 100% relative humidity MSE equilibrated to a Tg of 15°C after 2 weeks. A 50/50 blend of MSE/MST had oxygen barrier properties better than the individual polymers (O2 permeability coefficient is 0.0007 × 10−13 cm3(STP)·cm/cm2 ·s·Pa), lower than most commercial high barrier polymers. At 100% relative humidity, it equilibrated to a Tg of 42°C, well above room temperature. These are polymer systems with high gas barrier properties under both dry and wet conditions. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 75–83, 1998  相似文献   

20.
A highly stable proton conductor has been developed from carbon sphere oxide (CSO). Carbon sphere (CS) generated from sucrose was oxidized successfully to CSO using Hummers’ graphite oxidation technique. At room temperature and 90 % relative humidity, the proton conductivity of thin layer CSO on microsized comb electrode was found to be 8.7×10?3 S cm?1, which is higher than that for a similar graphene oxide (GO) sample (3.4×10?3 S cm?1). The activation energy (Ea) of 0.258 eV suggests that the proton is conducted through the Grotthuss mechanism. The carboxyl functional groups on the CSO surface are primarily responsible for transporting protons. In contrast to conventional carbon‐based proton conductors, in which the functional groups decompose around 80 °C, CSO has a stable morphology and functional groups with reproducible proton conductivity up to 400 °C. Even once annealed at different temperatures at high relative humidity, the proton conductivity of CSO remains almost unchanged, whereas significant change is seen with a similar GO sample. After annealing at 100 and 200 °C, the respective proton conductivity of CSO was almost the same, and was about ~50 % of the proton conductivity at room temperature. Carbon‐based solid electrolyte with such high thermal stability and reproducible proton conductivity is desired for practical applications. We expect that a CSO‐based proton conductor would be applicable for fuel cells and sensing devices operating under high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号