首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
α-Methylene-N-methylpyrrolidone (α-MMP) was synthesized and homopolymerized by bulk and solution methods. The poly(α-MMP) is readily soluble in water, methanol, methylene chloride, and dipolar aprotic solvents at room temperature. Thermogravimetric analysis of poly(α-MMP) showed a 10% weight loss at 330°C in air. The kinetics of α-MMP homopolymerization and copolymerization were investigated in acetonitrile, using azobisisobutyronitrile (AIBN) as an initiator. The rate of polymerization Rp could be expresed by Rp = k[AIBN]0.49[α-MMP]1.3. The overall activation energy was calculated to be 84.1 kj/mol. The relative reactivity ratios of α-MMP (M2) copolymerization with methyl methacrylate (r1 = 0.59, r2 = 0.26) in acetonitrile were obtained. Applying the Q-e scheme led to Q = 2.18 and e = 1.77. These Q and e values are larger than those for acrylamide derivatives.  相似文献   

2.
Radical homo- and copolymerizations of methyl α-trifluoroacetoxyacrylate (MTFAA) are studied by using azo initiators at 40 and 60°C. The rate of the homopolymerization of MTFAA was lower than that of methyl α-acetoxyacrylate. Monomer reactivity ratios (r), and Q and e values were estimated to be r1 = 0.03, r2 = 0.27, Q1 = 0.65, and e1 = 1.38 from the copolymerization of MTFAA (M1) and styrene (M2) at 60°C. Preferential crosspropagation was observed in particular in the copolymerization of MTFAA and α-methylstyrene. The influence of replacing the hydrogens of the acetoxy moiety of the acyloxyacrylate with the fluorines upon the copolymerization reactivity is discussed on the basis of the 13C-NMR chemical shift of various acyloxyacrylates. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3537–3541, 1997  相似文献   

3.
Polymerization and copolymerization of methyl α-(2-carbomethoxyethyl)acrylate (MMEA), which is known as a dimer of methyl acrylate, were studied in relation to steric hindrance-assisted polymerization. The propagating polymer radical from MMEA was detected as a five-line spectrum and quantified by ESR spectroscopy during the bulk polymerization at 40–80°C. The absolute rate constants of propagation and termination (κp and κt) for MMEA at 60°C (κp = 19 L/mol s and κt = 5.1 × 105 L/mol s) were evaluated using the concentration of the propagating radical at the steady state. The balance of the propagation and termination rates allows polymer formation from MMEA. The polymerization rate of MMEA at 60°C was less than that of MMA by a factor of about 4 at a constant monomer concentration. Although no influence of ceiling temperature was observed at a temperature ranging from 40 to 70°C, addition-fragmentation in competition with propagation reduced the molecular weight of the polymer. The content of the unsaturated end group was estimated to be 0.1% at 60°C to the total amount of the monomer units consisting of the main chain. MMEA exhibited reactivities almost similar to those of MMA toward polymer radicals. It is concluded that MMEA is one of the polymerizable acrylates bearing a substituted alkyl group as an α-substituent. Characterization of poly(MMEA) was also carried out. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
α-Trifluoromethylstyrene (TFMST) does not undergo radical homopolymerization with azobis(isobutyronitrile) (AIBN) in bulk at 60°C. Low-temperature initiation was not effective either. Radical copolymerization of TFMST (M2) with styrene (ST, M1) has yielded monomer reactivity ratios as follows: r1 = 0.60 and r2 = 0.00. It has been found that the cyclohexyl radical generated by reaction of cyclohexylmercuric chloride with sodium borohydride adds to the β-carbon of TFMST 7.5 times faster than that of ST. Combination of the copolymerization analysis and the “mercury method” has allowed us to estimate Alfrey–Price Q and e parameters for TFMST to be 0.43 and 0.90, respectively. Thus, due to the strongly electron-withdrawing effect of the trifluoromethyl group, this styrene is highly electron deficient. In spite of the favorable electronic effect, however, the ceiling temperature appears very low, presumably due to the steric hindrance.  相似文献   

5.
The concentration of water in purified and BaO-dried α-methylstyrene was found to be 1.1 × 10?4M. The radiation-induced bulk polymerization of the α-methylstyrene thus prepared was studied in the temperature range of ?20°C to 35°C. The polymerization rate varied as the 0.55 power of the dose rate. The theoretical molecular weights and molecular weight distribution were calculated from a proposed kinetic scheme and these values were then compared with those found experimentally. The agreement between these two was reasonably close, and therefore it was concluded that, from the molecular weight distribution point of view, the proposed kinetic scheme for the cationic polymerization of α-methylstyrene is an acceptable one. The rate constant for chain transfer to monomer kf changed with temperature and was found to be responsible for the decrease in the molecular weight of the polymer with increase in temperature. kf and kp at 20°C were found to be 0.95 × 104 l./mole-sec and 0.99 × 106 l./mole-sec, respectively.  相似文献   

6.
N-phenyl-α-methylene-β-lactam (PML), a cyclic analog of N,N-disubstituted methacrylamides which do not undergo radical homopolymerization, was synthesized and polymerized with α,α′-azobis (isobutyronitrile) (AIBN) in solution. Poly (PML) (PPML) is readily soluble in tetrahydrofuran, chloroform, pyridine, and polar aprotic solvents but insoluble in toluene, ethyl acetate, and methanol. PPML obtained by radical initiation is highly syndiotactic (rr = 92%), exhibits a glass transition at 180°C, and loses no weight upto 330°C in nitrogen. The kinetics of PML homo-polymerization with AIBN was investigated in N-methyl-2-pyrrolidone. The rate of polymerization (Rp) can be expressed by Rp = k[AIBN]0.55[PML]1.2 and the overall activation energy has been calculated to be 87.3 kJ/mol. Monomer reactivity ratios in copolymerization of PML (M2) with styrene (M1) are r1 = 0.67 and r2 = 0.41, from which Q and e values of PML are calculated as 0.60 and 0.33, respectively.  相似文献   

7.
α-Trimethylsilyloxystyrene (TMSST), the silyl enol ether of acetophenone, was not homopolymerized either by a radical or a cationic initiator. Radical copolymerization of TMSST with styrene (ST) and acrylonitrile (AN) in bulk and the terpolymerization of TMSST, ST, and maleic anhydride (MA) in dioxane were studied at 60°C and the polymerization parameters of TMSST were estimated. The rate of copolymerization decreased with increased amounts of TMSST for both systems. Monomer reactivity ratios were found as follows: r1 = 1.48 and r2 = 0 for the ST (M1)–TMSST (M2) system and r1 = 0.050 and r2 = 0 for the AN (M1)–TMSST (M2) system. The terpolymerization of ST (M1), TMSST (M2), and MA (M3) gave a terpolymer containing ca. 50 mol % of MA units with a varying ratio of TMSST to ST units and the ratio of rate constants of propagation, k32/k31, was found to be 0.39. Q and e values of TMSST were determined using the values shown above to be 0.88 and ?1.13, respectively. Attempted desilylation by an acid catalyst for the copolymer of TMSST with ST afforded polystyrene partially substituted with hydroxyl groups at the α-position.  相似文献   

8.
Preparatory to triblock synthesis experiments, the cationic polymerization of α-methylstyrene (αMeSt) was investigated using the 2-chloro-2,4,4-trimethylpentane (TMPCI)/TiCl4 initiating system in the presence of triethylamine (Et3N) as electron donor (ED) and CH3Cl/n-hexane mixed solvent in the ?80 to ?40°C range. Conversions are influenced by temperature, [TiCl4], [Et3N], and [αMeSt]. The polymerization of αMeSt is living at ?80°C: Both termination and chain transfer to monomer are frozen out, however, initiation is slow relative to propagation. Highly syndiotactic (>94%) Pα Mest was obtained. At?60deg;C initiator efficiency is ca. 100%, but termination becomes evident. Et3N may act both as Ed and as proton scavenger. Novel poly(α-methystyrene-b-isobutylene-b-α-methylstyrene) (PαMeSt-PIB-PαMeSt) triblocks have been synthesized by adding αMeSt to biliving polyisobutylene carbocations (⊕PIB⊕) in the ?80 to ?40°C range. The effects of temperature, solvent polarity, and [Et3N] on the block copolymerization have been investigated. At ?80°C, the rate of crossover from ⊕PIB⊕ to αMeSt is lower than that of propagation of PαMeSt⊕, so that the triblock is contaminated by PIB and PIB-b-PαMeSt. At ?60°C, crossover occurs preferentially. The rate of propagation relative to that of crossover is also reduced by lowering the solvent polarity and increasing the [Et3N]. High crossover efficiency and blocking efficiency can be obtained under optimum blocking conditions. The triblocks are novel thermoplastic elastomers (TPEs). © 1994 John Wiley & Sons, Inc.  相似文献   

9.
The relationship between stereoregularity and polymerization conditions of α-methylstyrene has been studied by means of NMR spectra. The effects of solvents and various Freidel-Crafts catalysts have been investigated. The stereoregularity of poly-α-methylstyrene increased with increased polymer solubility in the solvent used and with decreasing polymerization temperature. This behavior is completely different from the stereospecific polymerization of vinyl ethers and methyl methacrylate in homogeneous systems. This may be due to the strong steric repulsion exerted by the two substituents in the α-position of α-methylstyrene. For example, with BF3 · O(C2H5)2 as catalyst at ?78°C., atactic polymer is obtained in n-hexane, a nonsolvent for α-methylstyrene, whereas highly stereoregular polymer is produced in toluene or methylene chloride, good solvents for the polymer. However, the polarity of the solvent and the nature of the catalyst hardly affect the stereoregularity of the polymer.  相似文献   

10.
Poly(α-methylstyrene-butadiene-α-methylstyrene) (mSBmS) was synthesized by two stages living anionic polymerization. Sodium naphthalene was used as initiator and HMPT as promoter to accelerate cross-over reactions. The microstructure and composition of mSBmS were identified by infrared and nuclear magnetic resonance spectroscopes. The domain size was roughly calculated from TEM observation. It was observed that the morphology changed with the composition. The mSBmS exhibited two Tgs, ?4 and 172°C, that associated with polybutadiene and poly-α-methylstyrene, respectively. Comparing stress relaxation behaviors of mSBmS and styrene-butadienestyrene (SBS) at various temperatures, mSBmS showed a better thermal stability and degradation resistance than SBS. From the thermal gravimetric analysis, at 200°C, mSBmS gave a weight loss less than 1%, which provided a further evidence of better thermal stability of this material than of SBS.  相似文献   

11.
The equilibrium anionic polymerization of α-methylstyrene in p-dioxane, with potassium as initiator, has been investigated at 5, 15, 25, and 40°C by using high-vacuum techniques. The comparison of these results with those obtained previously for the equilibrium polymerization of α-methylstyrene in tetrahydrofuran revealed that, although the values of ΔG1c, the free-energy change upon the polymerization of 1 mole of liquid monomer to 1 bases-mole of liquid amorphous polymer of infinite chain length, are the same for both systems, there is a distinct effect of the solvent. This effect is reflected in the value of monomer equilibrium concentration and its variation with polymer concentration and is explained in terms of a solvent–monomer and solvent–polymer interaction parameter.  相似文献   

12.
Methyl trans-β-vinylacrylate (MVA) undergoes radical polymerization with α,α′-azobis(isobutyronitrile) (AIBN) in bulk and solution. The polymer obtained consists of 85% trans-1,4 and 15% trans-3,4 units. Poly(MVA) (PMVA) is readily soluble in common organic solvents, but insoluble in n-hexane and petroleum ether. PMVA exhibits a glass transition at 60°C, and loses no weight up to 300°C in nitrogen. The kinetics of MVA homopolymerization with AIBN was investigated in benzene. The rate of polymerization (Rp) can be expressed by Rp = k[AIBN]0.5[MVA]1.0, and the overall activation energy has been calculated to be 94 kJ/mol. The propagation radical of MVA at 80°C was detected by ESR spectroscopy, which indicated that the unpaired electron of the propagating radical was completely delocalized over the three allyl carbons. Furthermore, the steady-state concentration of the propagating radical of MVA at 60°C was determined by ESR spectroscopy, and the propagation rate constant (kp) was calculated to be 1.25 X 102 L/mol ·s. Monomer reactivity ratios in copolymerization of MVA (M2) with styrene (M1) are r1 = 0.16 and r2 = 4.9, from which Q and e values of MVA are calculated as 4.2 and -0.32, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Radical copolymerizations of β-propiolactone (denoted 2) with acrylonitrile (denoted 1) and with styrene (also denoted 1) and the structures of the resulting copolymers were studied. The bulk copolymerization with acrylonitrile by α,α′-azobisisobutyronitrile at 50°C gave polyesteracrylonitriles of high enough molecular weight to form tough and transparent films, with the monomer reactivity ratios, r1 = 0.84, r2 = 0.00, and the structure of the copolymers was Radical copolymerization with the same initiator in N,N-dimethylformamide gave polyesteracrylonitriles of the same structure as that of the bulk polymer, blended with β-propiolactone homopolymer which was due to the competing anionic homopolymerization of β-propiolactone. The reactivity ratios on the bulk copolymerization with styrene were r1 = 6.2 and r2 = 0.0 with benzoyl peroxide at 80°C, and r1 ? 32, r2 = 0 with α,α′-azobisisobutyronitrile at 50°C. Polyesterstyrenes of intrinsic viscosity up to 0.83 were obtained.  相似文献   

14.
The kinetics of α-methylene-γ-butyrolactone (α-MBL) homopolymerization was investigated in N,N-dimethylformamide (DMF) with azobis(isobutyronitrile) as initiator. The rate of polymerization (Rp) was expresed by Rp = k[AIBN]0.54[α-MBL]1.1 and the overall activation energy was calculated as 76.1 kJ/mol. Kinetic constants for α-MBL polymerization were obtained as follows: kp/kt1/2 = 0.161 L1/2 mol?1/2·s?1/2; 2fkd = 2.18 × 10?5 s?1. The relative reactivity ratios of α-MBL(M2) copolymerization with styrene (r1 = 0.14, r2 = 0.87) were obtained. Applying the Qe scheme led to Q = 2.2 and e = 0.65. These Q and e values for α-MBL are higher than those for MMA  相似文献   

15.
The spontaneous copolymerization of N-phenylmaleimide (NPMI) (M1) with ethyl α-phenylacrylate (EPA)(M2) were carried out in dioxane at 85°C. A high alternating tendency was observed. The monomer reactivity ratios were r1 = 0.07 ±0.01 and r2 = 0.09 ± 0.02. The maximum copolymerization rate and molecular weight occurs at 70–80 mol% (M1) in feed ratio. The spontaneous alternating copolymerization is considered to be carried out via a contact-type charge transfer complex (CTC) formed between the monomers. Thermogravimetric analyses (TGA) indicate the resulting copolymers have high thermal stability. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2927–2931, 1998  相似文献   

16.
The free-radical copolymerization of α-methylstyrene and styrene has been studied in toluene and dimethyl phthalate solutions at 60°C. Gas chromatography was used to monitor the rate of consumption of monomers. For styrene alone, the measured rate of polymerization Rp and M?n of the polymer coincided with values expected from previous studies by other workers. Solution viscosity η affected Rp and M?n of styrene homopolymers and copolymers as expected on the basis of an inverse proportionality between η1/2 and termination rate. The rate of initiation by azobisisobutyronitrile appears to be independent of monomer feed composition in this system. Molecular weights of copolymers can be accounted for by considering combinative termination only. The effects of radical chain transfer are not significant. A theory is proposed in which the rate of termination of copolymer radicals is derived statistically from an ideal free-radical polymerization model. This simple theory accounts quantitatively for Rp and M?n data reported here and for the results of other workers who have favored more complicated reaction models because of the apparent failure of simple copolymer reactivity ratios to predict polymer composition. This deficiency results from systematic losses of low molecular weight copolymer species in some analyses. Copolymer reactivity ratios derived with the assumption of a simple copolymer model and based on rates of monomer loss can be used to predict Rp values measured in other laboratories without necessity for consideration of depropagation or penultimate unit effects. The 60°C rate constants for propagation and termination in styrene homopolymerization were taken to be 176 and 2.7 × 107 mole/l.-sec, respectively. The corresponding figures for α-methylstyrene are 26 and 8.1 × 108 mole/l.-sec. These constants account for the sluggish copolymerization behavior of the latter monomer and the low molecular weights of its copolymers. The simple reaction scheme proposed here suggests that high molecular weight styrene–α-methylstyrene copolymers can be produced at reasonable rates at 60°C by emulsion polymerization. This is shown to be the case.  相似文献   

17.
Optically active N-α-methylbenzylmaleimide (MBZMI) was prepared with maleic anhydride and d-(+)-α-methylbenzylamine. The polymerizations of MBZMI were carried out with α,α′-azobisisobutyronitrile (AIBN) and n-butyllithium (n-BuLi) in tetrahydrofuran (THF). The specific rotations of the polymers obtained by AIBN and n-BuLi initiator were +11.1° to +13.0° and ?57.0° to ?89.2°, respectively. The weight-average molecular weights (Mw) for the polymers were between 4200 and 8000. Furthermore, MBZMI was copolymerized with styrene (ST) and methyl methacrylate (MMA) with AIBN in THF at 50°C to obtain optically active copolymers. The monomer reactivity ratios of MBZMI (M1) with ST (M2) were obtained as r1 = 0.027, r2 = 0.094 in the MBZMI–ST and r1 = 0.15, r2 = 1.54 in the MBZMI–MMA system. The Q-e values for MBZMI were Q1 = 0.78, e1 = 1.62. All the polymers and copolymers were found to show a weakly negative circular dichroism (CD) peak at about 250 nm and a strongly positive CD peak at about 220 nm.  相似文献   

18.
Ethyl α-hydroxymethylacrylate (EHMA) was polymerized in a 3 mol/L tetrahydrofuran solution at 50°C, using 2–2' azobisisobutyronitrile as initiator. The kinetic behavior indicates a higher polymerization rate for EHMA than for methyl methacrylate (MMA). Copolymerization reaction between MMA and EHMA, under the same experimental conditions, was carried out and values of rMMA = 1.264 and rEHMA = 1.285 were found for the reactivity ratios. The comparison of triad sequences as determined from Bernouillian statistic to those calculated from the experimental spliting of O-methyl and α-methyl 1H-NMR signals of the copolymers confirm the obtained results. © 1992 John Wiley & Sons, Inc.  相似文献   

19.
A variety of conditions, including catalysts [CuCl, CuI, Cu2O, and Cu(0)], ligands [2,2′‐bipyridine (bpy), tris(2‐dimethylaminoethyl)amine (Me6‐TREN), polyethyleneimine, and hexamethyl triethylenetetramine], initiators [CH3CHClI, CH2I2, CHI3, and F(CF2)8I], solvents [diphenyl ether, toluene, tetrahydrofuran, dimethyl sulfoxide (DMSO), dimethylformamide, ethylene carbonate, dimethylacetamide, and cyclohexanone], and temperatures [90, 25, and 0 °C] were studied to assess previous methods for poly(methyl methacrylate)‐b‐poly(vinyl chloride)‐b‐poly(methyl methacrylate) (PMMA‐b‐PVC‐b‐PMMA) synthesis by the living radical block copolymerization of methyl methacrylate (MMA) initiated with α,ω‐di(iodo)poly(vinyl chloride). CH3CHClI was used as a model for α,ω‐di(iodo)poly(vinyl chloride) employed as a macroinitiator in the living radical block copolymerization of MMA. Two groups of methods evolved. The first involved CuCl/bpy or Me6‐TREN at 90 °C, whereas the second involved Cu(0)/Me6‐TREN in DMSO at 25 or 0 °C. Related ligands were used in both methods. The highest initiator efficiency and rate of polymerization were obtained with Cu(0)/Me6‐TREN in DMSO at 25 °C. This demonstrated that the ultrafast block copolymerization reported previously is the most efficient with respect to the rate of polymerization and precision of the PMMA‐b‐PVC‐b‐PMMA architecture. Moreover, Cu(0)/Me6‐TREN‐catalyzed polymerization exhibits an external first order of reaction in DMSO, and so this solvent has a catalytic effect in this living radical polymerization (LRP). This polymerization can be performed between 90 and 0 °C and provides access to controlled poly(methyl methacrylate) tacticity by LRP and block copolymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1935–1947, 2005  相似文献   

20.
By measurement of the specific volume of solutions of poly-α-methylstyrene in α-methylstyrene monomer at 25°C, the dilatometric constant was found to be KD = (0.002007 ± 0.000030)%?1. Estimation of the temperature dependence resulted in the equation (KD)t = 1.81 × 10?3 + 7.82 + 10?6 t, where t denotes temperature in °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号