首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Crystal Structure of the Hydrated Cyano Complexes NMe4MnII[(Mn, Cr)III(CN)6] · 3 H2O and NMe4Cd[MIII(CN)6] · 3 H2O (MIII = Fe, Co): Compounds Related to Prussian Blue The crystal structures of the isotypic tetragonal compounds (space group I4, Z = 10) NMe4MnII · [(Mn, Cr)III(CN)6] · 3 H2O (a = 1653.2(4), c = 1728.8(6) pm), NMe4Cd[Fe(CN)6] · 3 H2O (a = 1642.7(1), c = 1733.1(1) pm) and NMe4Cd[Co(CN)6] · 3 H2O (a = 1632.1(2), c = 1722.4(3) pm) were determined by X‐rays. They exhibit ⊥ c cyanobridged layers of octahedra [MIII(CN)6] and [MIIN4(OH2)2], which punctually are interconnected also || c to yield altogether a spaceous framework. The MII atoms at the positions linking into the third dimension are only five‐coordinated and form square pyramids [MIIN5] with angles N–MII–N near 104° and distances of Mn–N: 1 × 214, 4 × 219 pm; Cd–N: 1 × 220 resp. 222, 4 × 226 resp. 228 pm. Further details and structural relations within the family of Prussian Blue are reported and discussed.  相似文献   

2.
On the Existence of the Compound K2TiOF4: Pyrohydrolytic Degradation of K2TiF6 and Thermochemical Behaviour of K2Ti(O2)F4 · H2O In an attempt to prepare K2TiOF4 we used the following three ways; solid-state reaction of K2TiF6, TiO2, and KF, pyrohydrolysis of K2TiF6 at 450 and 550°C, and thermal decomposition of K2Ti(O2)F4 · H2O. In each case the reaction products were mixtures of several compounds, always containing the kryolith-phase K2+xTiOxF6?x and TiO2. At 130°C K2Ti(O2)F4 · H2O forms K2Ti(O2)F4 by loss of H2O, and at 230°C the peroxogroup decomposes, yielding K2TiOF4 as main product. K2TiOF4 crystallizes tetragonally with the following lattice parameters: a = 769.7(1) and c = 1153.9(2)pm. The i.r. spectrum shows an absorption band at 810 cm?1, pointing to infinite chains of ? Ti? O? Ti? O? .  相似文献   

3.
N(B(NMe2)2)(Si(NMe2)3) (Ti(NMe2)3), [N(Si(NMe2)3)(Ti(NMe2)2)]2 und N(SiMe3)(Si(NMe2)3)(Ti(NMe2)3) — Synthesis and Characterization of New Molecular Single-source Precursors for Nitride and Carbonitride Ceramics Synthesis and spectroscopic data of the title compounds are reported. [N(Si(NMe2)3)(Ti(NMe2)2)]2 crystallizes in the space group P1 , a = 8.406(7), b = 10.673(8), c = 10.872(6) Å, α = 68.45(4)°, β = 71.72(4)°, γ = 78.11(7)°, 2 877 diffractometer data (Fo ? 2σFo), R = 0.051. The compound is characterized by a planar four-membered Ti2N2-ring with exocyclic tris(dimethylamino)silyl substituents attached to the nitrogen atoms of the ring.  相似文献   

4.
Crystal Structure of (NMe4)2[Re3Br11(H2O)] [Re3Br9(H2O)3](H2O)2 . (NMe4)2[Re3Br11(H2O)] [Re3Br9(H2O)3](H2O)2 crystallizes from hydrobromic acid solution of Re3Br9 · 2 H2O and NMe4Br at 0 – 5°C. The crystal structure (monoclinic; P21/m (Nr. 11); a = 967.9(3); b = 1 529.7(4); c = 1 710.9(4) pm; β = 91.66(2)°; Z = 2; R = 0.113; Rw = 0.068) has been determined from four-circle diffractometer data. The structure contains two different cluster units of trivalent rhenium, isolated anionic [Re3Br11(H2O)]2? units and neutral cluster units that are connected through crystal water molecules to chains{[Re3Br9(H2O)3](H2O)2}.  相似文献   

5.
Synthesis and Crystal Structures of the Phosphoraneiminato Complexes [SbF2(NPEt3)]2 and [SbF(NPEt3)2]2 as well as of NMe4+SbF4? The title compounds have been prepared from antimony trifluoride with the silylated phosphaneimine Me3SiNPEt3 and [NMe4]F, respectively. They were characterized by IR spectroscopy and by crystal structure determinations. [SbF2(NPEt3)]2 : Space group Pbca, Z = 8, structure determination with 1264 unique reflections, R1 = 0.028 for reflections with I > 2σ(I). Lattice dimensions at ?80°C: a = 1284.8, b = 1162.4, c = 1380.4 pm. The compound forms centrosymmetric dimeric molecules, in which the Ψ-trigonal-bipyramidal coordinated antimony atoms are linked via μ2-N bridges of the NPEt3? ligands. [SbF(NPEt3)2]2 : Space group P21/c, Z = 4, structure determination with 2270 unique reflections, R1 = 0.029 for reflections with I > 2μ(I). Lattice dimensions at ?75°C: a = 815.8, b = 1121.2, c = 2068.5 pm, β = 101.09°. The compound forms centrosymmetric dimeric molecules, in which the Ψ-trigonal-bipyramidal coordinated antimony atoms are linked via μ2-N bridges of one of the two NPEt3? ligands. The other NPEt3? group is terminally connected. NMe4+SbF4? : Space group P21/c, Z = 4, structure determination with 1503 unique reflections, R1 = 0.069 for reflections with I > 2μ(I). Lattice dimensions at ?50°C: a = 539.80, b = 896.10, c = 1760.3 pm, β = 90.338°. The compound includes monomeric SbF4? ions with distorted Ψ-trigonal-bipyramidal environment of the antimony atoms.  相似文献   

6.
Chromium Hexacyano Complexes: The Crystal Structures of the Cyano Elpasolites (NMe4)2ACr(CN)6 (A = K, Cs) and of the Cubic Barium Compound Ba3[Cr(CN)6]2 · 20 H2O The crystal structures of the cyano elpasolites (NMe4)2KCr(CN)6 (a = 1527.3(1), b = 888.1(1), c = 1539.0(1) pm, β = 109.92(1)°; C2/c, Z = 4) and (NMe4)2CsCr(CN)6 (a = 1278.9(1) pm; Fm3m, Z = 4), as well as of the cubic compound Ba3[Cr(CN)6]2 · 20 H2O (a = 1631.0(1) pm; Im3m, Z = 4) were determined by X‐ray methods with single crystals. Reasons for the enlarged distances within the [Cr(CN)6]3–‐octahedron of the K compound (Cr–C: 209.3 pm) compared to the observations within both cubic complexes (206.1 resp. 206.9 pm) are discussed in context with the tolerance factors of cyano elpasolites. As is the case there concerning the cyano bridges Cr–CN–A towards the alkali ions the novel structure type of the barium compound, too, exhibits nearly linear bridging towards Ba. It contributes, however, only four N ligands to the ninefold [BaN4O5] coordination; part of the aqua ligands show disorder (Ba–N: 287.5, Ba–O: 281/293 pm).  相似文献   

7.
Single crystals of (NMe4)(HF2) were obtained during attempted recrystallization of NMe4F from fluoroolefin. X‐ray diffraction data show that (NMe4)(HF2) crystallizes in the orthorhombic space group Pmmn with unit cell dimensions a = 6.535(2), b = 8.688(3), and c = 5.333(2) Å. The symmetric and virtually linear HF2 anions exhibit a short F···F distance of 2.256(2) Å. The both crystal structures of (NMe4)(H2F3) (orthorhombic, Pbca, a = 8.509(1), b = 11.273(2), and c = 14.880(2) Å) and CsH2F3 (orthorhombic, P212121, a = 7.345(3), b = 9.126(4), and c = 11.444(4) Å) contain dihydrogentrifluoride anions, H2F3?, which have a bent shape and F···F distances of 2.30‐2.34Å.  相似文献   

8.
Single crystals of fluoride hydrates Mn3F8 · 12 H2O and AgMnF4 · 4 H2O have been prepared and characterized by X-ray methods. Mn3F8 · 12 H2O crystallizes in the space group P1 (a = 623.0(3), b = 896.7(4), c = 931.8(4) pm, α = 110.07(2)°, β = 103.18(2)°, γ = 107.54(2)°, Z = 1); AgMnF4 · 4 H2O crystallizes in the space group P21/m (a = 700.9(2), b = 726.1(1), c = 749.4(3) pm, β = 107.17(3)°, Z = 2). Both structures contain Jahn-Teller-distorted [Mn(H2O)2F4]? anions as well as crystal water molecules and exhibit a complex hydrogen bond network between anions and cations, i. e. [Mn(H2O)6]2+ for the first and a polymeric [Ag(H2O)2]? cation for the second compound.  相似文献   

9.
Transition Metal Peroxofluoro Complexes. VIII. Crystal Structure of K2Ti(O2)F4. · 1/2H2O. Structural Comparison and Spectroscopic Data of the Compounds K2Ti(O)2F4 · xH2O (x = 1, 1/2, 0) The yellow hemihydrat K2Ti(O2)F4 · 1/2 H2O crystallizes monoclinic (space group C2/c, a = 1680.5(6), b = 653.2(1), c = 1224.3(4) pm, β = 115.8(1)°, Z = 8, Rw = 0.038 for 1113 independent reflections). It contains isolated, dinuclear, di(μ-fluoro)-bridged [Ti2(O2)2F8]4? anions, as known by orange coloured K2Ti(O2)F4 · H2O [1]. They are arranged in layers which are parallel to the (100) plane, whereas they are linked by hydrogen bonds forming infinite chains in K2Ti(O2)F4 · 1/2 H2O. Anhydrous K2Ti(O2)F4 - even yellow - crystallizes monoclinic with a = 828.9(2), b = 1107.6(2), c = 1303.9(3) pm, β = 92.29(2)°. I.r. and Raman spectra of all compounds are listed and interpreted. On the basis of the UV spectra the different colours of some titaniumperoxofluoro compounds are discussed in relation to the titanium-peroxid bonding.  相似文献   

10.
Crystal Structures of Octacyanomolybdates(IV). III (NMe4)3Li[Mo(CN)8] · 3.5 H2O and Cs7Na[Mo(CN)8]2 · 4.17 H2O: Examples of Dodecahedral and Square Antiprismatic Eight-Coordination At single crystals of the hydrated tetragonal cyano complexes (NMe4)3Li[Mo(CN)8] · 3.5 H2O (a = 1707.5(3), c = 1054.9(2) pm, space group P421m, Z = 4) and Cs7Na[Mo(CN)8]2 · 4.17 H2O (a = 1547.9(1), c = 3254.6(6) pm, I41/a, Z = 8) X-ray structure determinations were performed. The [Mo(CN)8]4– polyhedra agree with respect to their mean distances Mo–C and C–N (216,7/114,3 pm resp. 216,1/114,7 pm) within their standard deviations, however, there is a distorted dodecahedron in the first case ((NMe4)3Li-complex), and a distorted square antiprism in the second (Cs7Na-complex). The coordination of the counter cations, partly hydrated, the formation of hydrogen bridges and the packing of the complex anions is discussed.  相似文献   

11.
Preparation and Crystal Structure of the First Mixed Alkalimetal Hydrogencarbonates NaA2[H(CO3)2] · 2H2O with A = K, Rb The new hydrogencarbonates NaK2[H(CO3)2] · 2H2O (Pnma, a = 934.07(13) pm, b = 789.31(10) pm, c = 1142.1(5) pm, VEZ = 842.0(4) · 106 pm3, Z = 4, R1 (I ? 2σ(I)) = 0.023, wR2 = 0.066 for 989 reflections) and NaRb2[H(CO3)2] · 2H2O (Pnma, a = 948.24(11) pm, b = 811.37(9) pm, c = 1189.0(2) pm, VEZ = 914.8(2) · 106 pm3, Z = 4, R1 (I ≤ 2σ(I)) = 0.031, wR2 = 0.077 for 1063 reflections) were prepared from aqueous solutions. The crystal structures were determined. The isostructural compounds contain dimeric, non centrosymmetric [H(CO3)2]3? anions. In NaK2[H(CO3)2] · 2H2O a short hydrogen bond (d(O … O) = 246.1(2) pm) with an asymmetric potential was detected. In NaRb2[H(CO3)2] · 2H2O a hydrogen bond with symmetric potential (d(O … O) = 247.8(5) pm) can be assumed. The IR-spectra of NaK2[H(CO3)2] · 2H2O and Na3[H(CO3)2] · 2H2O are compared.  相似文献   

12.
The Reactions of CH2=P(NMe2)3 with Fe(CO)5, Cr(CO)6, and CS2; Molecular Structures of [MeP(NMe2)3][(CO)5CrC(O)CH=P(NMe2)3], and (CO)4Fe=C(OMe)CH=P(NMe2)3 The ylide CH2=P(NMe2)3 ( 1 ) reacts with several binary transition metal carbonyls M(CO)x to produce the corresponding salt like compounds [MeP(NMe2)3][(CO)x–1MC(O)CH=P(NMe2)3] (M = Fe ( 3 ), Cr ( 4 )). The related reaction with CS2 leads to the salt [MeP(NMe2)3][SC(S)CH=P(NMe2)3] ( 2 ). While 4 is thermally stable, 3 rapidly decomposes at room temperature with formation of [MeP(NMe2)3]2[Fe2(CO)8] ( 8 ). Alkylation of 3 (at –50 °C) and 4 with MeSO3CF3 produces the related carbene complexes (CO)x–1M=C(OMe)CH=P(NMe2)3 ( 5 ) and ( 6 ); the reaction of 3 with Me3SiCl results in the formation of the carbene complex (CO)4Fe=C(OSiMe3)CH=P(NMe2)3 ( 7 ). 4 crystallizes in the space group P212121 (No. 19) with a = 1111.1(2), b = 1476.1(3), c = 1823.1(4) pm and Z = 4. 5 crystallizes in the space group P21/n (No. 14) with a = 1303.6(3), b = 910.5(4), c = 1627.0(4) pm, β = 96.06(2)° and Z = 4. The compounds have been characterized by elemental analyses, NMR (1H, 13C, 31P) and IR spectroscopy.  相似文献   

13.
Tl5SnF9 and Tl5TiF9: The First [Tl5F3]2+ Layers in Novel Thallium(I) Fluoridefluorometallates(IV) Tl5TiF9 and Tl5SnF9 were prepared via solid state reactions from mixed powders of the TlF and SnF4 or TiF4, respectively, in platinum crucibles under Ar (573 K). Both fluorides are colourless, transparent and extremely hygroscopic. The compounds Tl5MF9 (M = Sn, Ti) crystallize in a new structure type in Pbam (Nr. 55) with a = 1117.6 pm, b = 684.8 pm, c = 799.2 pm for Tl5SnF9 and a = 1111.4 pm, b = 674.7 pm, c = 783.2 pm for Tl5TiF9. Characteristic building units in the new Thallium(I) fluoridefluorometallates(IV) are [Tl5F3]2+ sheets found for the first time, which are connected via [MF6]2– octahedra (M = Ti, Sn) to a threedimensional network (dSn–F = 194–197 pm, dTi–F = 186–187 pm). The monovalent Tl are coordinated by 8 F with distances Tl–F between 264 and 334 pm. The chemical bonding is discussed on the basis of Extended‐Hückel band structure calculations.  相似文献   

14.
By adding piperazine to a hydrofluoric and phosphoric acid solution of Manganese(III) fluoride, the fluoride phosphate (pipzH2)[MnF2(HPO4)(H2O)](H2PO4) can be crystallized. Its structure is built by piperazinium(2+) cations, (H2PO4)? anions, and an anionic double‐chain of [HPO4] tetrahedra and [MnO3F2(H2O)] octahedra. The structure is triclinic, space group P , Z = 2, a = 622.97(4), b = 923.46(6), c = 1183.62(7) pm, α = 98.343(6)°, β = 100.747(7)°, γ = 107.642(5)°, R = 0.0289. It is worth noting that a ferrodistortive Jahn‐Teller order is observed with [MnO3F2(H2O)] octahedra strongly elongated along the F–Mn–OH2 axes perpendicular to the chain plane. The structure is stabilized by very strong hydrogen bonds.  相似文献   

15.
The First Hydrogencarbonates with a Trimeric [H2(CO3)3]4? Group: Preparation and Crystal Structure of Rb4H2(CO3)3 · H2O and K4H2(CO3)3 · 1.5 H2O Rb4H2(CO3)3 · H2O and K4H2(CO3)3 · 1,5 H2O were prepared by means of the reaction of (CH3)2CO3 with RbOH resp. KOH in aqueous methanole. Trimer [H2(CO3)3]4?-anions were found in the crystal structure of Rb4H2(CO3)3 · H2O (orthorhombic, Pnma (no. 62), a = 1 218.0(1) pm, b = 1 572.3(6) pm, c = 615.9(1) pm, VEZ = 1 179.5(5) · 106 pm3, Z = 4, R1(I ≥ 2σ(I)) = 0.027, wR2(I ≥ 2σ(I)) = 0.055). K4H2(CO3)3 · 1,5 H2O crystallizes in an OD-structure. The determined superposition structure (orthorhombic, Pbam (no. 55), a = 1 161.8(1) pm, b = 597.0(1) pm, c = 383.85(3) pm, VEZ = 266.3(1) · 106 pm3, Z = 1, R1(I ≥ 2σ(I)) = 0.035, wR2(I ≥ 2σ(I)) = 0.074) can be derived from the structure of the rubidium compound. The thermal decomposition of the substances is discussed.  相似文献   

16.
Transition Metal Peroxofluoro Complexes. IX. Crystal Structure of Ba3[Ti(O2)F5]2 · 2 H2O The pale yellow hydrat Ba3[Ti(O2)F5]2 · 2 H2O crystallizes tetragonal (space group P42/mbc, a = 1 248.5(3), c = 812.2(2) pm; Z = 4; R = 0.026 for 404 independent reflections). It contains isolated [Ti(O2)F5]3? anions. Thermal decomposition leads directly to α-Ba3Ti2O2F10, which is isotypic to α-Ba3Al2F12.  相似文献   

17.
Synthesis, Crystal Structure, and FTIR Spectra of the Oxoniumfluorometallates DienH2(H3O)[AlF6] and DienH2(H3O)[FeF6] Single crystals of the compounds DienH2(H3O)[AlF6] and DienH2(H3O)[FeF6] (Dien = Diethylenediamine or Piperazine) were obtained from aqueous HF solution. The compounds are isotypic and crystallize in the monoclinic space group P21/c, Z = 8 with the unit cell parameters a = 1333.7(3), b = 1261.8(3), c = 1234.5(2) pm, β = 115.79(3)° (Al compound) and a = 1354.0(3), b = 1267.5(3), c = 1255.9(3) pm, β = 115.48(3)° (Fe compound). The crystal structure consists of isolated [MF6]3? anions, H3O+ and DienH22+ cations. The [MF6]3? octahedra are connected via very strong O? H … F and N? H … F-bridges forming a three dimensional network structure. This strong hydrogen bonding was confirmed by the FTIR spectra.  相似文献   

18.
Concerning the Reaction of Cp2TiCl2 with [C(NMe2)3][(CO)4FeC(O)NMe2] – Crystal Structure of [C(NMe2)3]2[FeCl4] The title compound forms by the reaction of Cp2TiCl2 with [C(NMe2)3][(CO)4FeC(O)NMe2] in THF solution. It crystallizes in the space group Pbcn with a = 1 566.6(3); b = 976.4(2); c = 1 580.4(4) pm; Z = 4; R = 3.8%. Each [FeCl4]2? in is surrounded by eight cations. Two cations each are connected with one Cl atom by relatively short H …? Cl contacts leading to a distortion of the tetrahedral geometry of the anion.  相似文献   

19.
Transition Metal Peroxofluoro Complexes. VII. Peroxofluorokryolithes A3Ti(O2)F5 (A = K, Na) and K2NaTi(O2)F5. Crystal Structure of K3Ti(O2)F5 Peroxofluorokryolithes A3Ti(O2)F5 (A = K, Na) and K2NaTi(O2)F5 were prepared at pH 4.5–6 by adding H2O2 and AOH/AF to solutions of TiO2 in hydrofluoric acid or aqueous solutions of TiF4. In the range of pH 3–4.5 exist phases of peroxofluoro-kryolithes with variations in stoichiometrie. A single crystall X-ray structure analysis of K3Ti(O2)F5 (Fm3m, a = 883.6(1) pm) yielded a disordered kryolithstructure (R = 0.020, RW = 0.017). Na3Ti(O2)F5 was found to crystallize in two monoclinic low-temperature – and one cubic high-temperature modifications. K2NaTi(O2)F5 crystallizes cubic (Fm3m) with a = 847.8(1) pm. Vibrational spectra have been measured and thermal behavior was studied by DTA/DTG and high-temperature guinier. At pH 9.5 K3Ti(O2)2F3 has been synthesized  相似文献   

20.
Crystal Structure of the Mixed-Valence Iron Fluorid Hydrate Fe3F8 · 2 H2O Newly prepared was the red, monoclinic compound Fe3F8 · 2 H2O, single crystals of which could be obtained under hydrothermal high pressure conditions (space group C2/m with a = 761.2(3), b = 750.0(1), c = 746.9(3) pm, β = 118.38(2)° and Z = 2). The X-ray structure determination (RG = 0.0192 and 635 reflexions) yielded a framework structure, in which layers of octahedra 2[FeIIIF6/2] are connected via corners of [FeIIF4/2(H2O)2]-octahedra. The average distances in the nearly ideal octahedra are FeIII? F = 193.0, FeII? F = 208.1 and FeII? OH2 = 211.5 pm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号