首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The [C4H6O] ion of structure [CH2?CHCH?CHOH] (a) is generated by loss of C4H8 from ionized 6,6-dimethyl-2-cyclohexen-1-ol. The heat of formation ΔHf of [CH2?CHCH?CHOH] was estimated to be 736 kJ mol?1. The isomeric ion [CH2?C(OH)CH?CH2] (b) was shown to have ΔHf, ? 761 kJ mol?1, 54 kJ mol?1 less than that of its keto analogue [CH3COCH?CH2]. Ion [CH2?C(OH)CH?CH2] may be generated by loss of C2H4 from ionized hex-1-en-3-one or by loss of C4H8 from ionized 4,4-dimethyl-2-cyclohexen-1-ol. The [C4H6O] ion generated by loss of C2H4 from ionized 2-cyclohexen-1-ol was shown to consist of a mixture of the above enol ions by comparing the metastable ion and collisional activation mass spectra of [CH2?CHCH?CHOH] and [CH2?C(OH)CH?CH2] ions with that of the above daughter ion. It is further concluded that prior to their major fragmentations by loss of CH3˙ and CO, [CH2?CHCH?CHOH]+˙ and [CH2?C(OH)CH?CH2] do not rearrange to their keto counterparts. The metastable ion and collisional activation characteristics of the isomeric allenic [C4H6O] ion [CH2?C?CHCH2OH] are also reported.  相似文献   

2.
The recombination of CF2Cl with CH2Cl and CFCl2 with CH2F were employed to generate CF2ClCH2Cl* and CFCl2CH2F* molecules with 381 and 368 kJ mol?1, respectively, of vibrational energy in a room‐temperature bath gas. The unimolecular reactions of these molecules, which include HCl elimination, HF elimination, and isomerisation by interchange of chlorine and fluorine atoms, were characterized. The three rate constants for CFCl2CH2F were 2.9×107, 0.87×107 and 0.04×107 s?1 for HCl elimination, isomerisation and HF elimination, respectively. The isomerisation reaction must be included to have a complete characterization of the unimolecular kinetics of CFCl2CH2F. The rate constants for HCl elimination and HF elimination from CF2ClCH2Cl were 14×107and 0.37×107 s?1, respectively. Isomerisation that has a rate constant less than 0.08×107 s?1 is not important. These experimental rate constants were matched to calculated statistical rate constants to assign threshold energies, which are 264, 268, and 297 kJ mol?1, respectively, for isomerisation, HCl elimination, and HF elimination for CFCl2CH2F and 314, 251, and 289 kJ mol?1 in the same order for CF2ClCH2Cl. Density functional theory was used to evaluate the models that were needed for the statistical rate constants; the computational method was B3PW91/6‐31G(d′,p′). Threshold energies for the unimolecular reactions of CF2ClCH2Cl and CFCl2CH2F are compared to those for CF2ClCH3 and CFCl2CH3 to illustrate the elevation of threshold energies by F‐ or Cl‐atom substitution at the beta carbon atom (identified by CH). The DFT calculations systematically underestimate the threshold energy for HCl elimination.  相似文献   

3.
The reactions of ten metastable immonium ions of general structure R1R2C?NH+C4H9 (R1 = H, R2 = CH3, C2H5; R1 = R2 = CH3) are reported and discussed. Elimination of C4H8 is usually the dominant fragmentation pathway. This process gives rise to a Gaussian metastable peak; it is interpreted in terms of a mechanism involving ion-neutral complexes containing incipient butyl) cations. Metastable immonium ions ontaining an isobutyl group are unique in undergoing a minor amount of imine (R1R2C?NH) loss. This decomposition route, which also produces a Gaussian metastable peak, decreases in importance as the basicity of the imine increases. The correlation between imine loss and the presence of an isobutyl group is rationalized by the rearrangement of the appropriate ion-neutral complexes in which there are isobutyl cations to the isomeric complexes containing the thermodynamically more stable tert-butyl cations. A sizeable amount of a third reaction, expulsion of C3H6, is observed for metastable n-C4H9 +NH?CR1R2 ions; in contrast to C4H8 and R1R2C?NH loss, C3H6 elimination occurs with a large kinetic energy release (40–48 kJ mol?1) and is evidenced by a dish-topped metastable peak. This process is explained using a two-step mechanism involving a 1,5-hydride shift, followed by cleavage of the resultant secondary open-chain cations, CH3CH+ CH2CH2NHCHR1R2.  相似文献   

4.
The distonic ions HO+?CHCH2C˙H2 (1) and CH3C(?O+H)CH2C˙H2 (2) were directly generated, their decompositions characterized and their appearance energies determined by photoionization. Heats of formation derived from the appearance energies were 757 kJ mol?1 for 1 and 692 kJ mol?1 for 2. Deuterium labeling demonstrates that both ions decompose at low energies in the same ways as their isomers with the same skeletal structures, consistent with proposals that 1 and 2 are intermediates in the decompositions of those systems. Surprisingly, the values of the translational energy releases accompanying the formation of CH3CO+ and C2H5CO+ from 2 appear to be inversely proportional to the available excess energy. The 1,2-H-shift RC(?O+H)CH2C˙H2 → RC(?O+H)C˙HCH3 is compared to the corresponding, non-occurring 1,2-H-shift in alkyl free radicals.  相似文献   

5.
The unimolecular dissociation reactions for [C7H7O]+ ions generated by fragmentation of a series of precursor molecules have been investigated. The metastable kinetic energy values and branching ratios associated with decarbonylation and expulsion of a molecule of formaldehyde (CH2O) from the [C7H7O]+ ions are interpreted as the hydroxybenzyl and hydroxytropylium [C7H7O]+ not interconverting to a common structure on the microsecond time-scale. In addition, similar measurements on protonated benzaldehyde, methylaryloxy and phenyl methylene ether [C7H7O]+ ions are interpreted as the dominant fraction of these decomposing ions having unique structures on the microsecond time-scale. These results are supported by experimental heats of formation calculated from ionization/appearance energy measurements. The experimental heats of formation are determined as: hydroxybenzyl ions, 735 kJ mol?1; hydroxytropylium ions, 656 kJ mol?1; phenyl methylene ether ions, 640 kJ mol?1; methylaryloxy ions 803 kJ mol?1. The combination of the results reported in this paper with previously reported experimental data for stable [C7H7O]+ ions (see Ref. 1, C. J. Cassady, B. S. Freiser and D. H. Russell, Org. Mass Spectrom.) is interpreted as evidence that the relative population of benzyl versus tropylium [C7H7O]+ ion structures from a given precursor molecule is determined by isomerization of the parent ion and not by structural equilibration of the [C7H7O]+ ion.  相似文献   

6.
The loss of methyl from unstable, metastable and collisionally activated [CH2?CH? C(OH)?CH2]+˙ ions (1+˙) was examined by means of deuterium and 13C labelling, appearance energy measurements and product identification. High-energy, short-lived 1+˙ lose methyl groups incorporating the original enolic methene (C(1)) and the hydroxyl hydrogen atom (H(0)). The eliminations of C(1)H(1)H(1)H(4) and C(4)H(4)H(4)H(0) are less frequent in high-energy ions. Metastable 1+˙ eliminate mainly C(1)H(1)H(1)H(4), the elimination being accompanied by incomplete randomization of the five carbon-bound hydrogen atoms. The resulting [C3H3O]+ ions have been identified as the most stable CH2?CH? CO+ species. The appearance energy for the loss of methyl from 1 was measured as AE[C3H3O]+ = 10.47 ± 0.05 eV. The critical energy for 1+˙ → [C3H3O]+ + CH3˙ is assessed as Ec ? 173 kJ mol?1. Reaction mechanisms are proposed and discussed.  相似文献   

7.
The [C6H9]+ ions produced either via unimolecular H2O loss from 13 [C6H11O]+ precursors or direct protonation of 1,3- and 1,4-cyclohexadiene have identical collisional activation mass spectra. The kinetic energy release data for the process [C6H11O]+→[C6H9]++H2O are also very similar (on average T0.5=24 meV) irrespective of the constitution of the precursor. From the proton affinities of 1,3-cyclohexadiene (PA=837.2 kJ mol?1) using ion cyclotron resonance mass spectrometry the heat of formation of the [C6H9]+ ion is determined to 804.6 kJ mol?1. This value taken together with the results of molecular orbital calculations (MNDO) and the structure indicative losses of CH3. and C2H4 upon collisional activation suggest that the [C6H9]+ ion has the structure of the 1-methylcyclopentenylium ion f and not that of the slightly less stable cyclohexenylium ion g. The generator of an easily interconverting system of isomeric [C6H9]+ ions is unlikely to be due to the high barrier separating the various isomers.  相似文献   

8.
IR photodissociation spectra of mass‐selected clusters composed of protonated benzene (C6H7+) and several ligands L are analyzed in the range of the C? H stretch fundamentals. The investigated systems include C6H7+? Ar, C6H7+? (N2)n (n=1–4), C6H7+? (CH4)n (n=1–4), and C6H7+? H2O. The complexes are produced in a supersonic plasma expansion using chemical ionization. The IR spectra display absorptions near 2800 and 3100 cm?1, which are attributed to the aliphatic and aromatic C? H stretch vibrations, respectively, of the benzenium ion, that is, the σ complex of C6H7+. The C6H7+? (CH4)n clusters show additional C? H stretch bands of the CH4 ligands. Both the frequencies and the relative intensities of the C6H7+ absorptions are nearly independent of the choice and number of ligands, suggesting that the benzenium ion in the detected C6H7+? Ln clusters is only weakly perturbed by the microsolvation process. Analysis of photofragmentation branching ratios yield estimated ligand binding energies of the order of 800 and 950 cm?1 (≈9.5 and 11.5 kJ mol?1) for N2 and CH4, respectively. The interpretation of the experimental data is supported by ab initio calculations for C6H7+? Ar and C6H7+? N2 at the MP 2/6‐311 G(2df,2pd) level. Both the calculations and the spectra are consistent with weak intermolecular π bonds of Ar and N2 to the C6H7+ ring. The astrophysical implications of the deduced IR spectrum of C6H7+ are briefly discussed.  相似文献   

9.
The ionization and [C4H7]+ appearance energies for a series of C4H7CI and C4H7Br isomers have been measured by dissociative photoionization mass spectrometry. Cationic heats of formation, based on the stationary electron convention, are derived. No threshold ion is observed with a heat of formation corresponding to the trans-1-methylallyl cation, although there is evidence for formation of the less stable cis isomer. A 298 K heat of formation of 871 kJ mol?1 is obtained for the cyclopropylcarbinyl cation, with the cyclobutyl cation having a higher value of 886 kJ mol?1. At the HF/6-31G** level, ab initio molecular orbital calculations show the 2-butenyl, isobutenyl and homoallyl cations to be stable forms of [C4H7]+, being less stable than the trans-1-methylallyl cation by 101 kJ mol?1, 159 kJ mol?1 and 164 kJ mol?1, respectively. However, threshold formation is not observed for any of these ions, the fragmentation of appropriate precursor molecules producing [C4H7]+ ions with lower energy structures.  相似文献   

10.
Three new [C2H6O]+˙ ions have been generated in the gas phase by appropriate dissociative ionizations and characterized by means of their metastable and collisionally induced fragmentations. The heats of formation, ΔHf0, of the two ions which were assigned the structures [CH3O(H)CH2]+˙ and [CH3CHOH2]+˙ could not be measured. The third isomer, to which the structure \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 2} = \mathop {\rm C}\limits^{\rm .} {\rm H} \cdot \cdot \cdot \mathop {\rm H}\limits^ + \cdot \cdot \cdot {\rm OH}_{\rm 2} $\end{document} is tentatively assigned, was measured to have ΔHf0 = 732±5 kJ mol?1, making it the [C2H6O]+˙ isomer of lowest experimental heat of formation. It was found that the exothermic ion–radical recombinations [CH2OH]++CH3˙→[CH3O(H)CH2]+˙ and \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} \mathop {\rm C}\limits^{\rm + } {\rm HOH + H}^{\rm .} $\end{document}→[CH3CHOH2]+˙ have large energy barriers, 1.4 and ?0.9 eV, respectively, whereas the recombinations yielding [CH3CH2OH]+˙ have little or none.  相似文献   

11.
Ab initio molecular orbital calculations with moderately large polarization basis sets and including valence-electron correlation have been used to examine the structure and dissociation mechanisms of protonated methanol [CH3OH2]+. Stable isomers and transition structures have been characterized using gradient techniques. Protonated methanol is found to be the only stable isomer in the [CH5O]+ potential surface. There is no evidence for a tightly-bound complex, [HOCH2]+…?H2, analogous to the preferred structure [CH3]+…?H2 of [CH5]+. Protonated methanol is found to possess a pyramidal arrangement of bonds at the oxygen atom with a barrier to inversion of 8kJ mol?1. The lowest energy fragmentation pathways are dissociation into methyl cation and water (predicted to require 284 kJ mol?1 with zero reverse activation energy) and loss of molecular hydrogen (endothermic by 138 kJ mol?1 but with a reverse activation barrier of 149 kJ mol?1). The results offer a possible explanation as to why production of [CH2OH]+ from the reaction of methyl cation with water is not observed. Other dissociation processes examined include loss of a hydrogen atom to yield the methylenoxonium radical cation or methanol radical cation (requiring 441 and 490 kJ mol?1, respectively) and loss of a proton to yield neutral methanol (requiring 784 kJ mol?1).  相似文献   

12.
The fast flow method with laser induced fluorescence detection of CH3C(O)CH2 was employed to obtain the rate constant of k1 (298 K) = (1.83 ± 0.12 (1σ)) × 1010 cm3 mol?1 s?1 for the reaction CH3C(O)CH2 + HBr ? CH3C(O)CH3 + Br (1, ?1). The observed reduced reactivity compared with n‐alkyl or alkoxyl radicals can be attributed to the partial resonance stabilization of the acetonyl radical. An application of k1 in a third law estimation provides ΔfH(CH3C(O)CH2) values of ?24 kJ mol?1 and ?28 kJ mol?1 depending on the rate constants available for reaction ( ‐1 ) from the literature. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 32–37, 2006  相似文献   

13.
Collisional activation decomposition (CAD) spectra are interpreted as indicating that formation of ˙CH2CH2CO+ (1) from ionized cyclopentanone, succinic anhydride arid butyrolactone is important at 70 eV electron energy. However, photoionization appearance energy measurements and CAD spectra demonstrate that CH3CH?C?O (3) is formed from ionized cyclopentanone near threshold. Ab initio molecular orbital calculations place ΔH f (1) about 36 kJ mol?1 above ΔH f (3).  相似文献   

14.
Ab initio molecular orbital theory using basis sets up to 6-311G* *, with electron correlation incorporated via configuration interaction calculations with single and double substitutions, has been used to study the structures and energies of the C3H2 monocation and dication. In agreement with recent experimental observations, we find evidence for stable cyclic and linear isomers of [C3H2]+ ˙. The cyclic structure (, a) represents the global minimum on the [C3H2]+ ˙ potential energy surface. The linear isomer (, b) lies somewhat higher in energy, 53 kJ mol?1 above a. The calculated heat of formation for [HCCCH]+ ˙ (1369 kJ mol?1) is in good agreement with a recent experimental value (1377 kJ mol?1). For the [C3H2]2+ dication, the lowest energy isomer corresponds to the linear [HCCCH]2+ singlet (h). Other singlet and triplet isomers are found not to be competitive in energy. The [HCCCH]2+ dication (h) is calculated to be thermodynamically stable with respect to deprotonation and with respect to C? C cleavage into CCH+ + CH+. The predicted stability is consistent with the frequent observation of [C3H2]2+ in mass spectrometric experiments. Comparison of our calculated ionization energies for the process [C3H2]+ ˙ → [C3H2]2+ with the Qmin values derived from charge-stripping experiments suggests that the ionization is accompanied by a significant change in structure.  相似文献   

15.
The potential energy surface for the [CH5N] system has been investigated using ab initio molecular orbital calculations with large, polarization basis sets and incorporating valence-electron correlation. Two [CH5N] isomers can be distinguished: the well known methylamine radical cation, [CH3NH2], and the less familiar methylenammonium radical cation, [CH2NH3]. The latter is calculated to lie 8 kJ mol?1 lower in energy. A substantial barrier (176 kJ mol?1) is predicted for rearrangement of [CH2NH3] to [CH3NH2]. In addition, a large barrier (202 kJ mol?1) is found for loss of a hydrogen radical from [CH2NH3] via direct N—H bond cleavage to give the aminomethyl cation [CH2NH2]+. These results are consistent with the existence of the methylenammonium ion [CH2NH3] as a stable observable species. The barrier to loss of a hydrogen radical from [CH3NH2] is calculated to be 140 kJ mol?1.  相似文献   

16.
The isomeric pairs [CH3CN] and [CH2CNH] and [CH3NC] and [CH2NCH] have been established as stable, noninterconverting structures. The conclusion derives from studies of collision induced decomposition spectra. The same conclusion pertains for the ions [CH3CH2CN] and [CH3CHCNH], and for [NCCH2CH2CN], [HNCCHCH2CN] and [HNCCHCHCNH]. The energy barrier of a [1,3]-hydrogen shift, a possible isomerization mechanism, is determined to be at least 163 kJ mol?1 for the [CH3CN] and [CH2CNH] pair, and the barrier may be as high as 318 kJ mol?1. The C3H5N and C4H4N2 radical cations decompose before they can be activated with 318 kJ mol?1 of internal energy.  相似文献   

17.
The H2, N2/H2, CO2/H2, N2O/H2, CO/H2 and CH4 chemical ionization mass spectra of thirteen C8 to C11 alkylbenzenes are reported. Characteristic hydride and alkide ion abstraction reactions are observed with all reagent gases. The major fragmentation reactions of [MH]+ are olefin elimination to form a protonated arene and arene elimination to form an alkyl ion. From the effect of structure and protonation exothermicity it is concluded that rearrangement of primary alkyl groups to the more stable secondary or tertiary structure occurs prior to alkyl ion formation. A detailed fragmentation mechanism for protonated arenes is proposed. The ‘effective’ proton affinity of the methane-derived reagent system is estimated to be ~556 kJ mol?1.  相似文献   

18.
Ethenol, 1-d-ethenol, O-d-ethenol and Z-2-d-ethenol were prepared by pyrolysis of corresponding 5-norbornenols at 800°C/2 × 10?6 Torr. The most important fragments in the electron impact mass spectrum of ethenol are [C2H3O]+ and CHO+ and CH3˙. The hydrogen atom eliminated from the molecular ion comes mainly from the hydroxyl group (68%) and to a lesser extent from C(1) (25%) and C(2) (7%). The loss of the hydroxyl hydrogen is preceded by rate-determining migration of the hydrogen atom from C(1) onto C(2) to yield CH3C?OH+˙ions that decompose to CH3CO+ and H˙. The loss of deuterium from O-d-ethenol shows a very small primary isotope effect (kH/kD=1.07), whereas a significant effect is observed for the loss of hydrogen from 1-d-ethenol (kH/kD=1.28). The appearance energy of [C2H2DO]+ from 1-d-ethenol, AE=11.32 eV, gives a critical energy for the hydrogen loss, E=203 kJ mol?1, which is 90 kJ mol?1 above the thermochemical threshold for CH3CO++H˙. The appearance energy of CDO+ from 1-d-ethenol was measured as 12.96±0.07 eV, which sets the barrier to isomerization to CH3CDO+˙ at 1121 kJ mol?1. The ionization energy of ethenol was found to be 9.22±0.03 eV.  相似文献   

19.
The structures of the m/z 87, [C4H7O2]+, ions generated by dissociative ionization of CH3CGXCOOCH3 and XCH2CH2COOCH3 (X = CH3, Cl, Br, and I) have been investigated via their unimolecular and collisionally activated fragmentations and by apperance energy measurements. For both precursors loss of X = CH3 produced, via H atom transfer, ions of structure \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH_2 = CH}\mathop {\rm C}\limits^{\rm + } \left({{\rm OH}} \right){\rm OCH}_{\rm 3} $\end{document} (a), ΔHf = 386 kj mol?1. In marked contrast, loss of I˙ from ionized CH3CHICOOCH3 and ICH2CH2COOCH3 proceeded without rearrangement to yield respectively ions of structure \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH_3}\mathop {\rm C}\limits^{\rm + } {{\rm HCOOCH_3}} $\end{document} (b), ΔHf = 480 kJ mol?1 and (c), ΔHf = 450 kJ mol?1. These different fragmentation behaviours are explained via photoelectron spectra which show that the formal charge site in the precursor ion is at the carbonyl oxygen when X = CH3 but at the halogen atom when X = I. The precursor molecules X = Cl and Br display both of the above characteristics, CH3CHXCOOCH3 yielding mixtures of a and b and XCH2CH2COOCH3 producing a and c ions.  相似文献   

20.
Ab initio molecular orbital calculations with large, polarization basis sets and incorporating valence electron correlation have been employed to examine the [C2H2O] potential energy surface. Four [C2H2O] isomers have been identified as potentially stable, observable ions. These are the experimentally well-known ketene radical cation, [CH2?C?O] (a), and the presently unknown ethynol radical cation, [CH2?C? OH] (b), the oxirene radical cation (c) and an ion resembling a complex of CO with [CH2], (d). The calculated energies of b, c and d relative to a are 189, 257 and 259 kJ mol?1, respectively. Dissociation of ions a and d is found to occur without reverse activation energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号