首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Phosphaneimine and Phosphoraneiminato Complexes of Boron. Synthesis and Crystal Structures of [BF3(Me3SiNPEt3)], [BCl2(NPPh3)]2, [BCl2(NPEt3)]2, [B2Cl3(NPEt3)2]+BCl4?, and [B2Cl2(NPiPr3)3]+BCl4? The title compounds have been prepared from the corresponding silylated phosphaneimines and boron trifluoride etherate and boron trichloride, respectively. The compounds form white moisture sensitive crystals, which were characterized by 11B-nmr-spectroscopy, IR-spectroscopy and by crystal structure determinations. [BF3(Me3SiNPEt3)] : Space group P21/c, Z = 4, R = 0.032 for reflections with I > 2σ(I). Lattice dimensions at ?70°C: a = 1361.0, b = 819.56, c = 1422.5 pm, β = 109.86°. The donor acceptor complex forms monomeric molecules with a B? N bond length of 157.8 pm. [BCl2(NPPh3)]2 · 2 CH2Cl2 : Space group P21/c, Z = 2, R = 0.049 for reflections with I > 2σ(I). Lattice dimensions at ?50°C: a = 1184.6, b = 2086.4, c = 843.0 pm, β = 96.86°. The compound forms centrosymmetric dimeric molecules in which the boron atoms are linked to B2N2 four-membered rings with B? N distances of 152.7 pm via μ2-N bridges of the NPPh3 groups. [BCl2(NPEt3)]2 : Space group Pbca, Z = 4, R = 0.029 for reflections with I > 2σ(I). Lattice dimensions at ?90°C: a = 1269.5, b = 1138.7, c = 1470.3 pm. The compound has a molecular structure corresponding to the phenyl compound with B? N ring distances of 151.0 pm. [B2Cl3(NPEt3)2]+BCl4? : Space group Pbca, Z = 8, R = 0.034 for reflections with I > 2σ(I). Lattice dimensions at ?70°C: a = 1309.3, b = 1619.8, c = 2410.7 pm. Within the cations the boron atoms are linked to planar, asymmetrical B2N2 four-membered rings with B? N distances of 155.1 and 143.1 pm via the μ2-N atoms of the NPEt3 groups. [B2Cl2(NPiPr3)3]+BCl4? · CH2Cl2: Space group Pna2, Z = 4, R = 0.033 for reflections with I > 2σ(I). Lattice dimensions at ?70°C: a = 1976.5, b = 860.2, c = 2612.7 pm. Within the cations the boron atoms are linked to planar, asymmetrical B2N2 four-membered rings with B? N distances of 153.7 and 150.5 pm via the μ2-N atoms of two of the NPiPr3 groups. The third NPiPr3 group is terminally connected to the sp2-hybridized boron atom with a B? N distance of 133.5 pm and with a B? N? P bond angle of 165.3°.  相似文献   

2.
The syntheses and spectroscopic (NMR, MS) investigations of the antimonates [Ph4P]+[Me2SbCl4] (1), [Me4Sb]+[Me2SbCl4] (2), [Et4N]+[Ph2SbCl4] (3), [Bu4N]+[Ph2SbCl4] (4), [Me4Sb]+[Ph2SbCl4] (5), [Et3MeSb]+[Ph2SbCl4] (6), [Et4N]+[Ph2SbF4] (7) and [Et4N]+[Ph2SbBr4] (8) are reported. Halogen scrambling reactions of Et4NBr or Ph4EBr (E = P, Sb) with R2SbCl3 (R = Me, Ph) produce mixtures of compounds from which crystals of [Et4N]+[Ph2SbBr1.24Cl2.76] (9), [Et4N]+[Ph2SbBr2.92Cl1.08] (10) or [Ph4Sb]+[Me2SbCl4] (11) were isolated. The crystal and molecular structures of 1 and 3-11 are reported.  相似文献   

3.
Beyond the Conventional Number of Electrons in M6X12 Type Metal Halide Clusters: W6Cl18, (Me4N)2[W6Cl18], and Cs2[W6Cl18] Black octahedral single crystals of W6Cl18 were obtained by reducing WCl4 with graphite in a silica tube at 600 °C. The single crystal structure refinement (space group R 3¯, Z = 3, a = b = 1498.9(1) pm, c = 845.47(5) pm) yielded the W6Cl18 structure, already reported on the basis of X‐ray powder data. (Me4N)2[W6Cl18] and Cs2[W6Cl18] were obtained from methanolic solutions of W6Cl18 with Me4NCl and CsCl, respectively. The structure of (Me4N)2[W6Cl18] was refined from X‐ray single crystal data (space group P 3¯m1, Z = 1, a = b = 1079.3(1) pm, c = 857.81(7) pm), and the structure of Cs2[W6Cl18] was refined from X‐ray powder data (space group P 3¯, Z = 1, a = b = 932.10(7) pm, c = 853.02(6) pm). The crystal structure of W6Cl18 contains molecular W6Cl18 units arranged as in a cubic closest packing. The structures of (Me4N)2[W6Cl18] and Cs2[W6Cl18] can be considered as derivatives of the W6Cl18 structure in which 2/3 of the W6Cl18 molecules are substituted by Me4N+ ions and Cs+ ions, respectively. The conventional number of 16 electrons/cluster is exceeded in these compounds, with 18 electrons for W6Cl18 and 20 electrons for (Me4N)2[W6Cl18] and Cs2[W6Cl18]. Cs2[W6Cl18] exhibits temperature independent paramagnetic behaviour.  相似文献   

4.
Five niobium cluster compounds of the AI2[Nb6Cl18] type (AI = organic cation: [nPr4N]+, [nBu4N]+, [BMIm]+, [Ph4P]+, and [PPN]+) are obtained through treatment of [Nb6Cl14(H2O)4] · 4H2O with excess of thionyl chloride in the presence of an organic chloride, AICl. Single‐crystal structure studies show that the compounds consist of discrete cations and cluster [Nb6Cl18]2– anions. The cluster unit of the hydrated cluster starting material is oxidized by two electrons. Powder diffraction studies and NMR spectroscopic measurements show all compounds to crystallize without co‐crystallized solvent molecules. They are air and water stable. The solubility in organic solvents changes to a great extent on changing the type of cation. The ESI‐MS spectra of [nPr4N]2[Nb6Cl18] and [Ph4P]2[Nb6Cl18] show the pseudomolecular peak of the anionic cluster as well as additional signals, which involve simultaneously chloride mass loss and reduction processes.  相似文献   

5.
The structures of four bis­(tri­chloro­phosphine)­iminium {[Cl3P=N=PCl3]+; systematic name: tri­chloro­[(tri­chloro­phos­phor­an­yl­idene)im­in­io]phos­phor­us(V)} salts, namely bis(tri­chloro­phosphine)­iminium hexa­chloro­niobate, (Cl6NP2)[NbCl6], (I), bis­(tri­chloro­phosphine)­iminium hexa­chloro­tantalate, (Cl6NP2)[TaCl6], (II), bis­(tri­chloro­phosphine)­iminium tri‐μ‐chloro‐bis­[tri­chloro­titanium(IV)], (Cl6NP2)[Ti2Cl9], (III), and bis­[bis­(tri­chloro­phosphine)­iminium] di‐μ‐chloro‐bis­[tetrachloro­zirconium(IV)], (Cl6NP2)2[Zr2Cl10], (IV), have been determined. The P=N distances in the discrete [Cl3P=N=PCl3]+ moieties in structures (I), (II) and (IV) range from 1.5460 (14) to 1.5554 (16) Å, and the P=N=P angles range from 136.8 (3) to 143.4 (4)°. The [Cl3P=N=PCl3]+ cation in (III) is disordered and the calculated geometries for the cation are therefore less reliable. Compounds (I) and (II) are isostructural and the metal anions have slightly distorted octahedral geometries. The anion in compound (III) consists of two distorted octahedral Ti centres linked by three μ2‐Cl atoms, while in compound (IV), the dianion is derived from two distorted edge‐shared ZrCl6 octahedra.  相似文献   

6.
MoCl4, ReCl4, and ReCl5 react with PCl5 in sealed glass ampoules at temperatures between 220° and 320° to [PCl4]2[Mo2Cl10] ( 1 ) [PCl4]2[Re2Cl10] ( 2 ), and [PCl4]3[ReCl6]2 ( 3 ). 2 crystallizes isotypically to the previously reported 1 and the respective titanium and tin containing analogues. The structure (triclinic, P1, Z = 1, a = 897.3(2), b = 946.0(2), c = 687.13(9) pm, α = 95.59(2)°, β = 95.80(2)°, γ = 101.07(2)°, V = 565.4(2) 106 pm3) is built of tetrahedral [PCl4]+ and edge sharing double octahedral [Re2Cl10]2– ions and can be derived from a hexagonal closest packing of Cl ions with tetrahedral and octahedral holes partially filled by P(V) and Re(IV), respectively. 3 crystallizes isotypically to [PCl4]3[PCl6][MCl6] (M = Ti, Sn) (tetragonal, P 42/mbc, Z = 4, a = 1496.2(1), c = 1363.2(2) pm). Because no evidence was found for the presence of [PCl6] ions, Re in 3 has to be of mixed valency with ReIV and ReV sharing the same crystallographic site. The structure can be derived from a cubic closest packing or alternatively from an only sparsely distorted body centered cubic arrangement of Cl ions which is rarely found for anion arrays. The tetrahedral and octahedral holes are partially filled by PV and MIV/V, respectively. Magnetic measurements show all three compounds to be paramagnetic and confirm the oxidation state IV for Mo and Re in 1 and 2 and the mixed valence (IV/V) for Re in 3 .  相似文献   

7.
A selection of complexes containing [(CH3)nPX+4−n] cations (XCl, Br) have been investigated by magic-angle spinning (MAS) 31P and 11B NMR spectroscopy. Qualitative information about ionic motion in these systems is derived from the observed linewidths, which are dependent upon the nature of the anions present in the lattices. Isomers of [(CH3)PCl+3Cl] and [(CH3)2PCl+2Cl] are detected, confirming previous Raman spectroscopic observations. The mixed-halogen cations [(CH3)PCl2Br+], [(CH3)PClBr+2] and [(CH3)2PClBr+] are also observed, complexed with both single-halide and polyatomic anions. Differences in NMR linewidths are again noted. These results are compared with Raman studies on the same complexes and contrasted with a similar investigation of the [PClnBr+4−n] (O⩽n⩽4) system.  相似文献   

8.
Synthesis and Structure of Ammine and Amido Complexes of Iridium The reaction of (NH4)2[IrCl6] with NH4Cl at 300 °C in a sealed glass ampoule yields the iridium(III) ammine complex (NH4)2[Ir(NH3)Cl5], which crystallizes isotypically with K2[Ir(NH3)Cl5] in the orthorhombic space group Pnma with Z = 4, and a = 1350.0(2); b = 1028.5(3); c = 689.6(2) pm. The reaction of (NH4)2[IrCl6] with NH3 at 300 °C, however, gives the already known [Ir(NH3)5Cl]Cl2 beside a small amount of [Ir(NH3)4Cl2]Cl2. In pure form [Ir(NH3)5Cl]Cl2 is obtained by ammonolysis of (NH4)2[Ir(NH3)Cl5] at 300 °C with NH3. [Ir(NH3)4Cl2]Cl2 crystallizes triclinic (P1, Z = 1, a = 660,2(3); b = 680,4(3); c = 711,1(2) pm; α = 103,85(2)°, β = 114,54(3)°, γ = 112,75(2)°). The structure contains Cl anions and [Ir(NH3)4Cl2]2+ cations with a trans position of the Cl atoms. Upon reaction of [Ir(NH3)5Cl]Cl2 with Cl2 one ammine ligand is eliminated yielding [Ir(NH3)4Cl2]Cl, which is transformed to orthorhombic [Ir(NH3)4(OH2)Cl]Cl2 (Pnma, Z = 4, a = 1335,1(3); b = 1047,9(2); c = 673,4(2) pm) by crystallization from water. In the octahedral complex [Ir(NH3)4(OH2)Cl]2+ the four ammine ligands have an equatorial position, whereas the Cl atom and the aqua ligand are arranged axial. Oxidation of (NH4)2[Ir(NH3)Cl5] with Cl2 at 330 °C affords the tetragonal IrIV complex (NH4)[Ir(NH3)Cl5] (P4nc, Z = 2, a = 702.68(5); c = 912.89(9) pm). Its structure was determined using the powder diagram. Oxidation of (NH4)2[Ir(NH3)Cl5] with Br2 in water, on the other hand, gives (NH4)2[IrBr6] crystallizing in the K2[PtCl6] type. Oxidation of (PPh4)2[Ir(NH3)Cl5] with PhI(OAc)2 in CH2Cl2 affords the IrV amido complex (PPh4)[Ir(NH2)Cl5].  相似文献   

9.
Reactions of bis(phosphinimino)amines LH and L′H with Me2S ? BH2Cl afforded chloroborane complexes LBHCl ( 1 ) and L′BHCl ( 2 ), and the reaction of L′H with BH3 ? Me2S gave a dihydridoborane complex L′BH2 ( 3 ) (LH=[{(2,4,6‐Me3C6H2N)P(Ph2)}2N]H and L′H=[{(2,6‐iPr2C6H3N)P(Ph2)}2N]H). Furthermore, abstraction of a hydride ion from L′BH2 ( 3 ) and LBH2 ( 4 ) mediated by Lewis acid B(C6F5)3 or the weakly coordinating ion pair [Ph3C][B(C6F5)4] smoothly yielded a series of borenium hydride cations: [L′BH]+[HB(C6F5)3]? ( 5 ), [L′BH]+[B(C6F5)4]? ( 6 ), [LBH]+[HB(C6F5)3]? ( 7 ), and [LBH]+[B(C6F5)4]? ( 8 ). Synthesis of a chloroborenium species [LBCl]+[BCl4]? ( 9 ) without involvement of a weakly coordinating anion was also demonstrated from a reaction of LBH2 ( 4 ) with three equivalents of BCl3. It is clear from this study that the sterically bulky strong donor bis(phosphinimino)amide ligand plays a crucial role in facilitating the synthesis and stabilization of these three‐coordinated cationic species of boron. Therefore, the present synthetic approach is not dependent on the requirement of weakly coordinating anions; even simple BCl4? can act as a counteranion with borenium cations. The high Lewis acidity of the boron atom in complex 8 enables the formation of an adduct with 4‐dimethylaminopyridine (DMAP), [LBH ? (DMAP)]+[B(C6F5)4]? ( 10 ). The solid‐state structures of complexes 1 , 5 , and 9 were investigated by means of single‐crystal X‐ray structural analysis.  相似文献   

10.
Phosphorane Iminato-Trichloroselenates(II): Syntheses and Crystal Structures of [SeCl(NPPh3)2]+SeCl3? and [Me3SiN(H)PMe3]2+[Se2Cl6]2? [SeCl(NPPh3)2]+SeCl3? has been synthesized by the reaction of Se2Cl2 with Me3SiNPPh3 in acetonitrile solution, forming orangered crystals, whereas red crystals of [Me3SiN(H)PMe3]2+[Se2Cl6]2? were obtained by the reaction of Me3SiNPMe3 with SeOCl2 in acetonitrile solution. Both complexes were characterized by X-ray structure determinations. [SeCl(NPPh3)2]+SeCl3?: Space group P21/n, Z = 4, structure solution with 7 489 observed unique reflections, R = 0.057. Lattice dimensions at ?60°C: a = 1 117.0; b = 2 241, c = 1 407.5 pm, β = 95.61°. In the cation [SeCl(NPPh3)2]+ the selenium atom is φ-tetrahedrally coordinated by the chlorine atom and by the nitrogen atoms of the phosphorane iminato ligands, whereas the anion SeCl3? has a T-shaped structure with φ-trigonal-bipyramidale surrounding of the selenium atom. [Me3SiN(H)PMe3]2+[Se2Cl6]2?: Space group P21/c, Z = 4, structure solution with 2 093 observed unique reflections, R = 0.080. Lattice dimensions at ?70°C: a = 956, b = 828, c = 1 973 pm, β = 93.80°. The structure consists of [Me3SiN(H)PMe3]+ ions and planar [Se2Cl6]2? anions, in which the selenium atoms are bridged nearly symmetrically by two chlorine atoms.  相似文献   

11.
TAS Indolide and TAS Carbazolide: Structures of [TAS]+[IndHInd]? and [TAS]+[Carb]?·½CarbH From the reaction of TAS‐fluoride [(Me2N)3S]+[Me3SiF2]? with trimethylsilyl‐indole and trimethylsilyl‐carbazole TAS‐indolide and TAS‐carbazolide are formed. During crystallisation partially protonation to indole and carbazole occurs, resulting in the formation of [TAS]+[IndHInd]? ( 3a ) and [TAS]+[Carb]?·½CarbH ( 5a ) according to X‐ray analysis.  相似文献   

12.
Synthesis and Properties of Lineary Phosphorylchlorphosphazenes The phosphorylchlorphosphazenes, Cl2(O)P—[N?PCl2]n—Cl, (n = 1, 2, 3) react like POCl3 with hexamethyldisilazan forming silylamides, Cl2(O)P—[N ? PCl2]n—NHSi(CH3)3, (n = 0, 1, 2, 3). From these are obtained the phosphorylchlorphosphazenes by reaction with PCl5 containing one group —N ? PCl2 more.  相似文献   

13.
Attempts have been made to prepare salts with the labile tris(trimethylsilyl)chalconium ions, [(Me3Si)3E]+ (E=O, S), by reacting [Me3Si-H-SiMe3][B(C6F5)4] and Me3Si[CB] (CB=carborate=[CHB11H5Cl6], [CHB11Cl11]) with Me3Si-E-SiMe3. In the reaction of Me3Si-O-SiMe3 with [Me3Si-H-SiMe3][B(C6F5)4], a ligand exchange was observed in the [Me3Si-H-SiMe3]+ cation leading to the surprising formation of the persilylated [(Me3Si)2(Me2(H)Si)O]+ oxonium ion in a formal [Me2(H)Si]+ instead of the desired [Me3Si]+ transfer reaction. In contrast, the expected homoleptic persilylated [(Me3Si)3S]+ ion was formed and isolated as [B(C6F5)4] and [CB] salt, when Me3Si-S-SiMe3 was treated with either [Me3Si-H-SiMe3][B(C6F5)4] or Me3Si[CB]. However, the addition of Me3Si[CB] to Me3Si-O-SiMe3 unexpectedly led to the release of Me4Si with simultaneous formation of a cyclic dioxonium dication of the type [Me3Si-μO-SiMe2]2[CB]2 in an anion-mediated reaction. DFT studies on structure, bonding and thermodynamics of the [(Me3Si)3E]+ and [(Me3Si)2(Me2(H)Si)E]+ ion formation are presented as well as mechanistic investigations on the template-driven transformation of the [(Me3Si)3E]+ ion into a cyclic dichalconium dication [Me3Si-μE-SiMe2]22+.  相似文献   

14.
Structural Chemistry of the Alkyl- and Arylhaloarsenates(III) [Me2As2Cl5], [RAsCl3], [R2As2Br6]2– (R = Me, Et, Ph) and [Ph2AsX2] (X = Cl, Br) The alkyl- and arylhaloarsenates(III) [Ph4P][Me2As2Cl5] ( 1 ), [Ph4P][RAsCl3] (R = Me, Et, Ph, 2 – 4 ), [Me3PhN][PhAsCl3] ( 5 ), [Ph4P]2[R2As2Br6] (R = Me, Et, Ph, 6 – 8 ), [n-Pr4N][Ph2AsCl2] ( 9 ) and [n-Bu4N][Ph2AsBr2] ( 10 ) have been prepared and their structures established by X-ray diffraction. In contrast to the chloroarsenates(III) 2 – 5 , which all contain isolated ψ-trigonal bipyramidal anions [RAsCl3], the analogous bromoarsenates(III) 6 – 8 exhibit dimeric structures. Whereas the trans sited As–Cl distances in 2 and 3 are very similar a pronounced degree of asymmetry is apparent for the Cl–As–Cl three-centre bonds in 4 and 5 [2.396(1) and 2.602(1) Å in 5]. In 6 and 7 Ci symmetry related RAsBr2 units are connected through long As…Br bonds [2.926(1) and 3.116(2) Å in 6 ]. The bromophenylarsenate(III) anion of 8 which contains two effectively undistorted ψ-trigonal bipyramids [PhAsBr3] associated by weak As…Br interactions [3.117(2) Å]. In view of its very long bridging As…Cl distances the [Me2As2Cl5] anion in 1 can, as 6 an 7 , be regarded as two MeAsCl2 molecules weakly linked through a chloride ion.  相似文献   

15.
《Polyhedron》2002,21(5-6):549-552
Reaction of BCl3 with 2-methoxyaniline (1:6 equiv.) in toluene, and subsequent metallation with nBuLi (3 equiv.) produces {[Li4B(NR)3·THF]+[BnBu4]·toluene}2 (R=2-methoxyphenyl), which contains the first example of a trisimido borate trianion—the imido analogue of the orthoborate trianion, [BO3]3−.  相似文献   

16.
Spectroscopic and Crystallographic Characterization of [Cl3PNPCl3][MoOCl4] and Crystal Structure of [Cl3PNPCl3][MoCl6] [Cl3PNPCl3][MoCl6] was obtained by reaction of MoCl5 with [Cl3PNPCl3]Cl or [Cl3PNPCl3][PCl6]. Its crystal was determined by X-ray diffraction (R = 0.072 for 889 observed reflexions). Lattice parameters: a = 811.9, b = 2086, c = 1016 pm, β = 101.7°, space group P21/c, Z = 4. The [Cl3PNPCl3]+ ions have a similar structure as in Cl3PNPCl3 [PCl6] with PNP angles of 139°, but the crystal structures of the two compounds are not isotypic. Partial hydrolysis of [Cl3PNPCl3][MoCl6] yields [Cl3PNPCl3][MoOCl4] which forms green, very moisture sensitive crystals. X-ray diffraction patterns of [Cl3PNPCl3][MoOCl4] single crystals exhibit planes of diffuse scattered radiation perpendicular to c*, which show the presence of a two-dimensional disorder. Additional sharp reflexions correspond to an averaged structure with the lattice parameters a = 1598.4, b = 1141.2 and c = 415.1 pm, Z = 2, space group Pba2. Refinement of the averaged  相似文献   

17.
Oxidative Addition of N‐chlorotriphenylphosphoraneimine onto Phosphorus(III) Chloride and Antimony(III) Chloride. Crystal Structures of (Cl3PNPPh3)2[PCl6][ClHCl], [SbCl4(HNPPh3)2][SbCl6], and [Sb(NPPh3)4][SbCl6] Phosphorus(III) chloride reacts with N‐chlorotriphenylphosphoraneimine, ClNPPh3, in CH2Cl2 solution strongly exothermically via oxidative addition to give (Cl3PNPPh3)2[PCl6][ClHCl] ( 1 ). As a by‐product, Ph3PNP(O)Cl2 can be obtained, which is formed from PCl3 and ClNPPh3 in the presence of POCl3. In contrast to these results, antimony(III) chloride reacts with ClNPPh3 in CH2Cl2 solution to give a mixture of the phosphoraneimine complex [SbCl4(HNPPh3)2][SbCl6] ( 2 ) and the phosphoraneiminato complex [Sb(NPPh3)4][SbCl6] ( 3 ). The complexes 1 ‐ 3 were characterized by IR spectroscopy and by single crystal X‐ray determinations. 1 : Space group C2/c, Z = 4, lattice dimensions at 193 K: a = 3282.0(2), b = 798.7(1), c = 1926.1(2) pm, β = 107.96(1)°, R1 = 0.0302. 1 contains [Cl3PNPPh3]+ cations with PN bond lengths of 152.5(2) and 160.9(2) pm, and a PNP bond angle of 140.5(1)°. 2 ·CH2Cl2: Space group , Z = 2, lattice dimensions at 193 K: a = 1031.2(1), b = 1448.3(2), c = 1811,4(2) pm, α = 70.96(1)°, β = 87.67(1)°, γ = 75.37(1)°, R1 = 0.0713. 2 ·CH2Cl2 contains cations [SbCl4(HNPPh3)2]+ with octahedrally coordinated Sb atom and the HNPPh3 ligand molecules being in trans‐position. Sb–N bond lengths are 207.6(6) and 209.3(6) pm, PN bond lengths 162.3(7) and 160.8(7), which approximately corresponds with double bonds. 3 ·0.5CH2Cl2: Space group P4/n, Z = 2, lattice dimensions at 193 K: a = b = 1678.8(1), c = 1244.3(1) pm, R1 = 0.0618. 3 ·0.5CH2Cl2 contains [Sb(NPPh3)4]+ cations with tetrahedrally coordinated Sb atom and short Sb–N bond lengths of 193.7(6) pm. The PN distances of the phosphoraneiminato ligands, (NPPh3)? with 156.5(6) pm, correspond with double bonds, the SbNP bond angles are 130.6(3)°.  相似文献   

18.
Synthesis, Crystal Structures, and Vibrational Spectra of [Pt(N3)6]2– and [Pt(N3)Cl5]2–, 195Pt and 15N NMR Spectra of [Pt(N3)nCl6–n]2– and [Pt(15NN2)n(N215N)6–n]2–, n = 0–6 By ligand exchange of [PtCl6]2– with sodium azide mixed complexes of the series [Pt(N3)nCl6–n]2– and with 15N‐labelled sodium azide (Na15NN2) mixtures of the isotopomeres [Pt(15NN2)n(N215N)6–n]2–, n = 0–6 and the pair [Pt(15NN2)Cl5]2–/[Pt(N215N)Cl5]2– are formed. X‐ray structure determinations on single crystals of (Ph4P)2[Pt(N3)6] ( 1 ) (triclinic, space group P1, a = 10.175(1), b = 10.516(1), c = 12.380(2) Å, α = 87.822(9), β = 73.822(9), γ = 67.987(8)°, Z = 1) and (Ph4As)2[Pt(N3)Cl5] · HCON(CH3)2 ( 2 ) (triclinic, space group P1, a = 10.068(2), b = 11.001(2), c = 23.658(5) Å, α = 101.196(14), β = 93.977(15), γ = 101.484(13)°, Z = 2) have been performed. The bond lengths are Pt–N = 2.088 ( 1 ), 2.105 ( 2 ) and Pt–Cl = 2.318 Å ( 2 ). The approximate linear azido ligands with Nα–Nβ–Nγ‐angles = 173.5–174.6° are bonded with Pt–Nα–Nβ‐angles = 116.4–121.0°. In the vibrational spectra the PtCl stretching vibrations of (n‐Bu4N)2[Pt(N3)Cl5] are observed at 318–345, the PtN stretching modes of (n‐Bu4N)2[Pt(N3)6] at 401–428 and of (n‐Bu4N)2[Pt(N3)Cl5] at 408–413 cm–1. The mixtures (n‐Bu4N)2[Pt(15NN2)n(N215N)6–n], n = 0–6 and (n‐Bu4N)2[Pt(15NN2)Cl5]/(n‐Bu4N)2[Pt(N215N)Cl5] exhibit 15N‐isotopic shifts up to 20 cm–1. Based on the molecular parameters of the X‐ray determinations the vibrational spectra are assigned by normal coordinate analysis. The average valence force constants are fd(PtCl) = 1.93, fd(PtNα) = 2.38 and fd(NαNβ, NβNγ) = 12.39 mdyn/Å. In the 195Pt NMR spectrum of [Pt(N3)nCl6–n]2–, n = 0–6 downfield shifts with the increasing number of azido ligands are observed in the range 4766–5067 ppm. The 15N NMR spectrum of (n‐Bu4N)2[Pt(15NN2)n(N215N)6–n], n = 0–6 exhibits by 15N–195Pt coupling a pseudotriplett at –307.5 ppm. Due to the isotopomeres n = 0–5 for terminal 15N six well‐resolved signals with distances of 0.03 ppm are observed in the low field region at –201 to –199 ppm.  相似文献   

19.
The compounds, 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (MeNˆNˆN) (L1) and 2,6-bis(3,5-ditertbutylpyrazol-1-ylmethyl)pyridine (tBuNˆNˆN) (L2), react with either [Pd(NCMe)2Cl2] or [Pd(COD)ClMe] to form the mononuclear palladium complexes [Pd(MeNˆNˆN)Cl2] (1), [Pd(MeNˆNˆN)ClMe] (2), [Pd(tBuNˆNˆN)Cl2] (3) and [Pd(tBuNˆNˆN)ClMe] (4). Reactions of 1, 2 and 4 with the halide abstractor, NaBAr4 (Ar = 3,5-(CF3)2C6H3), led to the formation of stable tridentate cationic species [Pd(MeNˆNˆN)Cl]+(5), [Pd(MeNˆNˆN)Me]+ (6) and [Pd(tBuNˆNˆN)Cl]+ (7) respectively. The analogous carbonyl linker cationic species [Pd{(3,5-Me2pz-CO)2-py}Cl]+ (9) and [Pd{(3,5-tBu2pz-CO)2-py}Cl]+ (10), prepared by halide abstraction of the neutral complexes [Pd{(3,5-Me2pz-CO)2-py}Cl2] and [Pd{(3,5-tBu2pz-CO)2-py}Cl2] by NaBAr4, were however less stable with t1/2 of 14 and 2 days respectively. Attempts to crystallize 1 and 3 from the mother liquor resulted in the isolation of the salts [Pd(MeNˆNˆN)Cl]2[Pd2Cl6] (11) and [Pd(tBuNˆNˆN)Cl]2[Pd2Cl6] (12). Although when complexes 14 were reacted with modified methylaluminoxane (MMAO) or NaBAr4, no active catalysts for ethylene oligomerization or polymerization were formed, activation with silver triflate (AgOTf) produced active catalysts that oligomerized and polymerized phenylacetylene to a mixture of cis-transoidal and trans-cisoidal polyphenylacetylene.  相似文献   

20.
The reaction of AgSCN with (Me3PhN)3[Fe(NCS)6] in DMF yields two‐dimensional polymeric, heteronuclear complexes (Me3PhN)2[Ag2Fe(SCN)6] ( 1 ) and (Me3PhN)6[Ag6Fe3(SCN)18] · CH2Cl2·DMF ( 2a ) with bridging SCN? ligands, whereas additional (Me3PhN)(SCN) leads to (Me3PhN)4[Ag2Fe(SCN)8] ( 3 ) with a one‐dimensional structure. The selenocyanato complex 2b , homologous to 2a , could also be prepared. Single crystal X‐ray structure determinations show, that the Ag+ ions in 1 and 2a are coordinated tetrahedrally by four S atoms, in 3 by one N and three S atoms of the bridging SCN? ligands; six N atoms of the SCN? or SeCN? ligands bind to Fe2+ in an octahedral arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号