首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 591 毫秒
1.
New Phosphido-bridged Multinuclear Complexes of Ag, Cd and Zn. The Crystal Structures of [Ag4(PPh2)4(PMe3)4], [Ag6(PPh2)6(PtBu3)2] and [M4Cl4(PPh2)4(PnPr3)2] (M = Zn, Cd) AgCl reacts with Ph2PSiMe3 in the presence of a tertiary Phosphine PMe3 or PtBu3 to form the multinuclear complexes [Ag4(PPh2)4(PMe3)4] ( 1 ) and [Ag6(PPh2)6(PtBu3)2] ( 2 ). In analogy to that MCl2 reacts with Ph2PSiMe3 in the presence of PnPr3 to form the two multinuclear complexes [M4Cl4(PPh2)4(PnPr3)2] (M = Zn ( 3 ), Cd ( 4 )). The structures were characterized by X-ray single crystal structure analysis ( 1 : space group Pna21 (Nr. 33), Z = 4, a = 1 313.8(11) pm, b = 1 511.1(6) pm, c = 4 126.0(18) pm, 2 : space group P1 (Nr. 2), Z = 2, a = 1 559.0(4) pm, b = 1 885.9(7) pm, c = 2 112.4(8) pm, α = 104.93(3)°, β = 94.48(3)°, γ = 104.41(3)°; 3 : space group C2/c (Nr. 15), Z = 4, a = 2 228.6(6) pm, b = 1 847.6(6) pm, c = 1 827.3(6) pm, β = 110.86(2); 4 : space group C2/c (Nr. 15), Z = 4, a = 1 894.2(9) pm, b = 1 867.9(7) pm, c = 2 264.8(6) pm, β = 111.77(3)°). 3 and 4 may be considered as intermediates on the route towards polymeric [M(PPh2)2]n (M = Zn, Cd).  相似文献   

2.
Thiobromo Complexes of Arsenic and Antimony. Preparation and Crystal Structures of (PPh4)2[As2SBr6] · CH2Br2 and (PPh4)2[Sb2SBr6] · CH2Br2 (PPh4)2[As2SBr6] · CH2Br2 is formed by the reaction of As2S3, PPh4I and HI in dibromomethane. It can also be obtained, as well as (PPh4)2[Sb2SBr6] · CH2Br2, from (PPh4)2[As2Br8] and (PPh4)3[Sb2Br9], respectively, with bistrimethylsilylsulfide. The crystal structures of the title compounds were determined by X-ray diffraction. They are isotypic with (PPh4)2[As2SCl6] · C2H4Cl2. In the anions [M2SBr6]2? the M atoms (As or Sb) have a distorted octahedral coordination, the two octahedra share acommon face with one bridging S and two Br atoms; the lone electron pairs occupy the trans positions to the S atom. Crystal data: triclinic, space group P1 , Z = 2; (PPh4)2[As2SBr6] · CH2Br2, a = 119.1, b = 1203.6, c = 2067.5 pm α= 94.89, β = 97.78, γ = 112.20°, 3046 independent observed reflexions, R = 0.083; (PPh4)2[Sb2SBr6] · CH2Br2, a = 1198.9, b = 1224.3, c = 2085.5pm, α = 95.04, β = 98.48, γ = 112.13°C, 2380 reflexions, R = 0.079.  相似文献   

3.
Pentabromothio-diarsenate and -diantimonate: Preparation, Vibrational Spectra, and Crystal Structures of PPh4[As2SBr5] and PPh4[Sb2SBr5] The title compounds were obtained in CH2Br2 from PPh4Br, HBr and As2S3 or Sb2S3, respectively. Their i.r. and Raman spectra are reported. Their crystal structures were determined by X-ray diffraction. Crystal data: PPh4[As2SBr5], monoclinic, space group P21/n, Z = 4, a = 1192.3, b = 1528.1, c = 1618.0 pm, β = 95.53°, isotypic with PPh4[As2SCl5] (structure determination with 1539 observed reflexions, R = 0.052); PPh4[Sb2SBr5], triclinic, space group P1 , Z = 2, a = 1044,8, b = 1207.1, c = 1307.8 pm, α = 104.77, β = 108.63, γ = 98.34° (2398 observed reflexions, R = 0.032). Both ions, [As2SBr5]? and [Sb2SBr5]?, have the same general structure: including the lone electron pairs, the As and Sb atoms have distorted trigonal-bipyrimidal coordination, two bipyramids sharing a common edge with sulfur and bromine as bridging atoms. The [As2SBr5]? ions are associated to chains via As…Br contacts, the [Sb2SBr5]? ions form pseudodimeric units by Sb…S and Sb…Br contacts. Whereas the crystal packing of the As compound is similar to that of other PPh4+ compounds having a cation to anion ratio of 1:1, the Sb compound shows the packing principle known for 2:1 compounds.  相似文献   

4.
Syntheses and Crystal Structures of the Thiochloroantimonates(III) PPh4[Sb2SCl5] and (PPh4)2[Sb2SCl6]. CH3CN (PPh4)2Sb3Cl11, obtained from Sb2S3, PPh4Cl and HCl, reacts with Na2S4 in acetonitrile forming PPh4[Sb2SCl5]. From this and Na2S4 or from (PPh4)2[Sb2Cl8] and Na2S4 or K2S5 in acetonitrile (PPh4)2[Sb2SCl6] · CH3CN is obtained. Data obtained from the X-ray crystal structure determinations are: PPh4[Sb2SCl5], monoclinic, space group P21/c, a = 1002.9(3), b = 1705.6(5), c = 1653.7(5) pm, β = 99.12(2)°, Z = 4, R = 0.068 for 1283 reflextions; (PPh4)2[Sb2SCl6] · CH3CN, triclinic, space group P1 , a = 1287.8(7), b = 1343.6(9), c = 1696.5(9) pm, α = 69.82(5), β = 85.08(4), γ = 71.54(6)°, Z = 2, R = 0.059 for 6409 reflexions. In every anion two Sb atoms are linked via one sulfur and one ore two chloro atoms, respectively. Paris of [SbSCl5]? ions are associated via Sb …? S and Sb …? Cl contacts forming dimer units. In both compounds every Sb atom has a distorted octahedral coordination when the lone electron pair is included in the counting.  相似文献   

5.
The reaction of CuCl, LiAs(SiMe3)2 and dppb (Bis(diphenylphosphino)butane) leads to the formation of ionic cluster complexes. Depending on the reaction conditions one can isolate [Cu8As3(AsSiMe3)2(dppb)4]+[Cu{As2(SiMe3)2}{As4(SiMe3)4}] ( 1 ) and [Cu8As3(AsSiMe3)2(dppb)4]+[Cu{As(SiMe3)2}2] ( 2 ). The same reaction of CuCl, dppm (Bis(diphenylphosphino)methane) and LiSb(SiMe3)2 leads to the neutral cluster complex [Cu10(Sb3)2(SbSiMe3)2(dppm)6] ( 3 ). The structures of 1‐3 have been solved by X‐ray single crystal analyses.  相似文献   

6.
Novel Routes to the Synthesis of Thiohalogeno- and Cyclothioarsenates(III). Crystal Structures of PPh4[As2SBr6] · CH3CN and PPh4[SAsS5] By reactions of (PPh4)2[As2Cl8] and (PPh4)2[As2Br8] with Na2S4 in acetonitrile (PPh4)2[As2SCl6] · CH3CN and (PPh4)2[As2SBr6] · CH3CN were obtained, respectively. Using K2S5, PPh4[As2SCl5] and PPh4[SAsS5] were the products. The latter can also be obtained from PPh4[As2SCl5] and Na2S4, while PPh4[As3S3Br4] is formed from PPh4[As2SBr5] with K2S5. Two X-ray crystal structure determinations were performed. PPh4[As2SBr6] · CH3CN: triclinic, P1 , Z = 2, a = 1200.4(7), b = 1507.3(6), c = 1594.4(8) pm, α = 81.59(2), β = 78.22(3), γ = 80.58(2)°, R = 0.096 for 2298 observed reflexions. The structure contains [As2SBr6]2? -ions in which the two Sb atoms are joined via one S and two Br atoms. PPh4[SAsS5]: triclinic, P1 , Z = 2, a = 1133.9(4), b = 1142.5(4), c = 1186.9(5) pm, α = 102.77(4), β = 107.74(3), γ = 106.65(3)°, R = 0.043 für 2677 reflexions. In the [SAsS5]? -ion an AsS5 ring in the chair conformation is present.  相似文献   

7.
(PPh4)2[OsCl3(NO) (SnCl3)2]; Preparation, I.R. Spectrum, and Crystal Structure (P(C6H5)4)2[OsCl3(NO)(SnCl3)2] yields from the reaction of OsCl3(NO) with PPh4-[SnCl3] in dichloro methane forming red crystals. The complex crystallizes monoclinic in the space group C2/c with four formula units per unit cell. The crystal structure was determined by aid of X-ray diffraction data (2261 independent, observed reflexions, R = 4.9%). The cell parameters are a = 1369, b = 1989, c = 2088 pm, β = 99.54°. The structure consists of tetraphenyl phosphonium cations and [OsCl3(NO)(SnCl3)2]2?-anions. In the anion the osmium is coordinated octahedrally by three chlorine atoms (mean bond length r Os? Cl 238 pm), two SnCl3 groups in transposition to each other (r Os? Sn 265 pm) and the N-atom of the covalently bonded nitrosyl ligand (r Os? N 173 pm). The i.r. spectrum of the anion is reported and assigned.  相似文献   

8.
PPh4[As3S3Cl4] and PPh4[As3S3Br4] When As2S3 reacts with PPh4X and HX in 1,2-C2H4X2 (X = Cl, Br), the title compounds are obtained as minor products; the main products are PPh4[As2SX5]. Their crystal structures were determined by X-ray diffraction. PPh4[As3S3Cl4]: a = 1187.7, b = 1090.9, c = 1191.8 pm, α = 82.91, β = 88,93, γ = 88.52°; twins with twin plane (100); R = 0.109 for 1618 observed reflexions of one twin crystal. PPh4[As3S3Br4]: a = 1119.7, b = 1177.5, c = 1204.1 pm, α = 81.59, β = 85.88, γ = 88.25°; R = 0.061 for 2331 observed reflexions. Both compounds crystallize in the space group P1 , Z = 2, and can be considered to be isotypic. Nevertheless, PPh4[As3S3Br4] does not form twins as PPh4[As3S3Cl4]. The crystals consist of PPh4+ and [As3S3X4]? ions. In the anions, the three As atoms of an As3S3 ring in the chair conformation are commonly joined to an X atom and each As atom is bonded to one further terminal X atom. Cations and anions are packed in alternating layers.  相似文献   

9.
Thiochloroarsenates (III): Preparation, Vibrational Spectra, and Crystal Structures of PPh4[As2SCl5] and (PPh4)2[As2SCl6] · C2H4Cl2 PPh4[As2SCl5] can be obtained from As2S3 + PPh4Cl with HCl in CH2Cl2 or 1,2-C2H4Cl2. It reacts with a second mole of PPh4Cl to yield (PPh4)2[As2SCl6]. The latter also is formed by the reaction of As2S5 + 2 PPh4Cl with HCl, a second product being (PPh4)2[As2Cl8]. The i.r. and Raman spectra of the title compounds are reported. Their crystal structures were determined by X-ray diffraction. Crystal data: PPh4[As2SCl5], monoclinic, space group P21/n, a = 1175.8, b = 1508.0, c = 1593.4 pm, β = 96.22°, Z = 4; (PPh4)2[As2SCl6] · C2H4Cl2, triclinic, P1, a = 1166.3, b = 1188.2, c = 2044.6 pm, α = 95.47, β = 97.53, γ = 111.05°, Z = 2. Including the lone electron pairs, the coordination of the As atoms in the [As2SCl5]? ion is distorted trigonal-bipyramidal with the S, one Cl atom, and an electron pair in equatorial positions; the two bipyramids around the two As atoms share a common edge. The As atoms in the [As2SCl6]2? ion have a distorted octahedral coordination, the two octahedra share a common face; the lone electron pairs are in the trans positions to the S atom.  相似文献   

10.
Syntheses and Crystal Structures of [Cu4(As4Ph4)2(PRR′2)4], [Cu14(AsPh)6(SCN)2(PEt2Ph)8], [Cu14(AsPh)6Cl2(PRR′2)8], [Cu12(AsPh)6(PPh3)6], [Cu10(AsPh)4Cl2(PMe3)8], [Cu12(AsSiMe3)6(PRR′2)6], and [Cu8(AsSiMe3)4(PtBu3)4] (R, R′ = Organic Groups) Through the reaction of CuSCN with AsPh(SiMe3)2 in the presence of tertiary phosphines the compounds [Cu4(As4Ph4)2(PRR′2)4] ( 1 – 3 ) ( 1 : R = R′ = nPr, 2 : R = R′ = Et; 3 : R = Me, R′ = nPr) and [Cu14(AsPh)6(SCN)2(PEt2Ph)8] ( 4 ) can be synthesised. Using CuCl instead of CuSCN results to the cluster complexes [Cu14(AsPh)6Cl2(PRR′2)8] ( 5–6 ) ( 5 : R = R′ = Et; 6 : R = Me, R′ = nPr), [Cu12(AsPh)6(PPh3)6] ( 7 ) and [Cu10(AsPh)4Cl2(PMe3)8] ( 8 ). Through reactions of CuOAc with As(SiMe3)3 in the presence of tertiary phosphines the compounds [Cu12(AsSiMe3)6(PRR′2)6] ( 9 – 11 ) ( 9 : R = R′ = Et; 10 : R = Ph, R′ = Et; 11 : R = Et, R′ = Ph) and [Cu8(AsSiMe3)4(PtBu3)4] ( 12 ) can be obtained. In each case the products were characterised by single‐crystal‐X‐ray‐structure‐analyses. As the main structure element 1 – 3 each have two As4Ph42–‐chains as ligands. In contrast 4 – 12 contain discrete AsR2–ligands.  相似文献   

11.
Synthesis and Crystal Structure of the Complexes [(n‐Bu)4N]2[{(THF)Cl4Re≡N}2PdCl2], [Ph4P]2[(THF)Cl4Re≡N‐PdCl(μ‐Cl)]2 and [(n‐Bu)4N]2[Pd3Cl8] The threenuclear complex [(n‐Bu)4N]2[{(THF)Cl4Re≡N}2 PdCl2] ( 1 ) is obtained in THF by the reaction of PdCl2(NCC6H5)2 with [(n‐Bu)4N][ReNCl4] in the molar ration 1:2. It forms orange crystals with the composition 1· THF crystallizing in the monoclinic space group C2/c with a = 2973.3(2); b = 1486.63(7); c = 1662.67(8)pm; β = 120.036(5)° and Z = 4. If the reaction is carried out with PdCl2 instead of PdCl2(NCC6H5)2, orange crystals of hitherto unknown [(n‐Bu)4N]2[Pd3Cl8] ( 3 ) are obtained besides some crystals of 1· THF. 3 crystallizes with the space group P1¯ and a = 1141.50(8), b = 1401.2(1), c = 1665.9(1)pm, α = 67.529(8)°, β = 81.960(9)°, γ = 66.813(8)° and Z = 2. In the centrosymmetric complex anion [{(THF)Cl4Re≡N}2PdCl2]2— a linear PdCl2 moiety is connected in trans arrangement with two complex fragments [(THF)Cl4Re≡N] via asymmetric nitrido bridges Re≡N‐Pd. For Pd(II) thereby results a square‐planar coordination PdCl2N2. The linear nitrido bridges are characterized by distances Re‐N = 163.8(7)pm and Pd‐N = 194.1(7)pm. The crystal structure of 3 contains two symmetry independent, planar complexes [Pd3Cl8]2— with the symmetry 1¯, in which the Pd atoms are connected by slightly asymmetric chloro bridges. By the reaction of equimolar amounts of [Ph4P][ReNCl4] and PdCl2(NCC6H5)2 in THF brown crystals of the heterometallic complex, [Ph4P]2[(THF)Cl4Re≡N‐PdCl(μ‐Cl)]2 ( 2 ) result. 2 crystallizes in the monoclinic space group P21/n with a = 979.55(9); b = 2221.5(1); c = 1523.1(2)pm; β = 100.33(1)° and Z = 2. In the central unit ClPd(μ‐Cl)2PdCl of the centrosymmetric anionic complex [(THF)Cl4Re≡N‐PdCl(μ‐Cl)]22— the coordination of the Pd atoms is completed by two nitrido bridges Re≡N‐Pd to nitrido complex fragments [(THF)Cl4Re≡N] forming a square‐planar arrangement for Pd(II). The distances in the linear nitrido bridges are Re‐N = 163.8(9)pm and Pd‐N = 191.5(9)pm.  相似文献   

12.
Synthesis and Structure of the Nitrido Complexes (PPh4)2[(O3Os≡N)2 MCl2] (M = Pd und Pt) and [{(Me2PhP)3Cl2Re≡N}2PdCl2] The threenuclear complexes (PPh4)2[(O3Os≡N)2MCl2] (M = Pd ( 1a ) and Pt ( 1b )) are obtained by the reaction of (PPh4) [OsO3N] with [MCl2(NCC6H5)2] (M = Pd and Pt) in form of orange red ( 1a ) or red brown ( 1b ) crystals. The compounds crystallize isotypically in the monoclinic space group P21/n with a = 1052.35(6), b = 1376.70(6), c = 1607.3(1) pm, β = 94.669(7)°, and Z = 2 for 1a and a = 1053.27(7), b = 1371.6(1), c = 1615.9(1) pm, β = 94.557(7)°, and Z = 2 for 1b . In the centrosymmetric complex anions [(O3O≡N)2MCl2]2— a linear MCl2 moiety is connected in trans arrangement with two complexes [O3Os≡N] via asymmetric nitrido bridges Os≡N‐M. For the M2+ cations such results a square‐planar coordination MCl2N2. The virtually linear nitrido bridges are characterized by distances Os‐N = 167.5 pm ( 1a ) and 164.2 pm ( 1b ) as well as Pd‐N = 196.2 pm and Pt‐N = 197.8 pm. The reaction of ReNCl2(PMe2Ph)3 with PdCl2(NCC6H5)2 in CH2Cl2 yields red crystals of the heterometallic complex [{(Me2PhP)3Cl2Re≡N}2PdCl2] ( 2 ). It crystallizes as 2 · 2 CH2Cl2 in the monoclinic space group C2/c with a = 2138.3(5); b = 1260.9(3); c = 2375.6(2) pm; β = 96.09(1)° and Z = 4. In the threenuclear complex [{(Me2PhP)3Cl2Re≡N}2PdCl2] with the symmetry Ci the coordination of the Pd2+ cation of the central PdCl2 unit is completed by two nitrido bridges Re≡N‐Pd to complexes (Me2PhP)3Cl2Re≡N forming a square‐planar arrangement. The distances in the linear nitrido bridges are Re‐N = 170.2 pm and Pd‐N = 197.1 pm.  相似文献   

13.
Azidocuprates(II). Crystal Structure of (PPh4)2[Cu2(N3)6] (PPh4)2[Cu(N3)4] and (PPh4)2[Cu2(N3)6], which is already known, are prepared from the corresponding chloro cuprates and excess silver azide in dichloro methane suspension. The azido cuprates form nonexplosive brown crystals of low sensitivity to moisture and are characterized by i.r. spectroscopy. (PPh4)2[Cu2(N3)6] was submitted to a X-ray crystallographic structural analysis (4284 observed, independent reflexions, R = 0.034). The compound crystallizes triclinic in the space group P1 with one formula unit per unit cell. The lattice parameters are a = 1047.4 pm; b = 1131.1 pm; c = 1179.4 pm; α = 101.26°; β = 109.31°; γ = 103.42°. The compound consists of PPh4 cations and centrosymmetric anions [Cu2(N3)6]2?, which meet D2h-symmetry fairly well. In the anions the copper atoms are linked to a planar Cu2N2 four-membered ring by the N α atoms of two azide groups. The other azido ligands are bonded terminally and complete coordination number 4 at the Cu atoms which show planar geometry.  相似文献   

14.
Synthesis and Crystal Structure of (PPh4)2[Mo2NCl9]2, a μ-Nitrido Complex with Molybdenum (V) and (VI) The title compound is formed as a by-product in the partial oxidation of Mo2NCl7 with chlorine in POCl3 solution, when the reaction mixture is treated with PPh4Cl. The crystals, which are sensitive to moisture, are black in reflectance and red in transmittance. A more effective synthesis is the direct reaction of PPh4[MoNCl4] with MoCl5 in dichloro methane. (PPh4)2[Mo2NCl9]2 was characterized by the i.r. spectrum and by a structural analysis with X-ray data. The compound crystallizes triclinic in the space group P1 with two formula units per unit cell (9225 independent observed reflexions, R = 0.058). The cell parameters are (20°C): a = 1144 pm, b = 1517 pm, c = 2000 pm, α = 79.8°, β = 80.1°, γ = 72.1°. (PPh4)2[Mo2NCl9]2 consists of PPh4⊕ cations and the anions [Mo2NCl9]222?, which dimerize via chloro bridges with Mo? Cl bons lengths of 243 pm and 287 pm. In the [Mo2NCl9]22? units the molybdenum atoms are linked by MoVI?N? MoV bridges (bond angles 179° and 174°, resp.) with Mo? N bond lengths of 167 pm and 212 pm.  相似文献   

15.
New Phosphorus-bridged Transition Metal Complexes The Crystal Structures of [Co4(CO)10(PiPr)2], [Fe3(CO)9(PtBu)(PPh)], [Cp3Fe3(CO)2(PPtBu)· (PtBu)], [(NiPPh3)2(PiPr)6], [(NiPPh3)Ni{(PtBu)3}2], and [Ni8(PtBu)6(PPh3)2] By the reaction of cyclophosphines with transition metal carbonyl-derivatives polynuclear complexes are built, in which the PR-ligands (R = organic group) are bonded in different ways to the metal. Depending on the reaction conditions the following compounds can be characterized: [Co4(CO)10 · (PiPr)2] ( 2 ), [Fe3(CO)9(PtBu)(PPh)] ( 3 ), [Cp3Fe3(CO)2(PPtBu) · (PtBu)] ( 4 ), [(NiPPh3)2(PiPr)6] ( 5 ), [(NiPPh3)Ni{(PtBu)3}2] ( 6 ) and [Ni8(PtBu)6(PPh3)2] ( 7 ). The structures of 2–7 were obtained by X-ray single crystal structure analysis ( 2 : space group Pccn (No. 56), Z = 4, a = 1001,4(2) pm, b = 1375,1(3) pm, c = 1675,5(3) pm; 3 : space group P21 (No. 4), Z = 2, a = 914,3(4) pm, b = 1268,7(4) pm, c = 1028,2(5) pm, β = 101,73(2)°; 4 : space group P1 (No. 2), Z = 2, a = 946,0(5) pm, b = 1074,4(8) pm, c = 1477,7(1,0) pm, α = 107,63(5)°, β = 94,66(5)°, γ = 111,04(5)°; 5 : space group P1 (No. 2), Z = 2, a = 1213,6(2) pm, b = 1275,0(2) pm, c = 2038,8(4) pm, α = 92,810(10)°, β = 102,75(2)°, γ = 93,380(10)°; 6 : space group P1 (No. 2), Z = 2, a = 1157,5(5) pm, b = 1371,9(6) pm, c = 1827,6(10) pm; α = 69,68(3)°, β = 80,79(3)°, γ = 69,36(3)°; 7 : space group P3 (No. 147), Z = 1, a = 1114,1(2) pm, b = 1114,1(2) pm, c = 1709,4(3) pm).  相似文献   

16.
Formation and Structure of the Cyclophosphanes P4(CMe3)2[P(CMe3)2]2 and P4(SiMe3)2[P(CMe3)2]2 n-Triphosphanes showing a SiMe3 and a Cl substituent at the atoms P1 and P2, like (Me3C)2P? P(SiMe3)? P(CMe3)Cl 3 or (Me3C)2P? P(Cl)? P(SiMe3)2 4 are stable only at temperatures below ?30°C. Above this temperature these compounds lose Me3SiCl, thus forming cyclotetraphosphanes, P4(CMe3)2[P(CMe3)2]2 1 out of 3 , P4(SiMe3)2[P(SiMe3)2]2 2a (cis) and 2b (trans) out of 4 . The formation of 1 proceeds via (Me3C)2P? P?PCMe3 5 as intermediate compound, which after addition to cyclopentadiene to give the Diels-Alder-adduct 6 (exo and endo isomers) was isolated. 6 generates 5 , which then forms the dimer compound 1 . Likewise (Me3C)2P? P?P-SiMe3 8 (as proven by the adduct 7 ) is formed out of 4 , leading to 2a (cis) and 2b (trans). Compound 1 is also formed out of the iso-tetraphosphane P[P(CMe3)2]2[P(CMe3)Cl] 9 , which loses P(CMe3)2Cl when warmed to a temperature of 20°C. 1 crystallizes monoclinically in the space group P21/a (no. 14); a = 1762.0(15) pm; b = 1687.2(18) pm; c = 1170.5(9) pm; β = 109.18(5)° and Z = 4 formula units in the elementary cell. The molecule possesses E conformation. The central four-membered ring is puckered (approx. symmetry 4 2m; dihedral angle 47.4°), thus bringing the substituents into a quasi equatorial position and the nonbonding electron pairs into a quasi axial position. The bond lengths in the four-membered ring of 1 (d (P? P) = 222.9 pm) are only slightly longer than the exocyclic bonds (221.8 pm). The endocyclic bond angles \documentclass{article}\pagestyle{empty}\begin{document}$ \bar \beta $\end{document}(P/P/P) are 85.0°, the torsion angles are ±33° and d (P? C) = 189.7 pm.  相似文献   

17.
Tetraphenylphosphonium Heptathiacyclo Thioarsenate(III), PPh4[SAsS7] From PPh4[As2SCl5] und K2S5 the title compound was obtained in acetonitrile among other products. According to an X-ray crystal structure analysis, it crystallizes in the orthorhombic space group Pna21 with a = 1 826.1(3), b = 1 312.0(2), c = 1 215.9(2) pm, Z = 4. The structure consists of PPh4+ and [SAsS7]? ions, AsS7 rings in the crown conformation as in S8 being present.  相似文献   

18.
New Phosphido-bridged Multinuclear Complexes of Ag and Zn. The Crystal Structures of [Ag3(PPh2)3(PnBu2tBu)3], [Ag4(PPh2)4(PR3)4] (PR3 = PMenPr2, PnPr3), [Ag4(PPh2)4(PEt3)4]n, [Zn4(PPh2)4Cl4(PRR′2)2] (PRR′2 = PMenPr2, PnBu3, PEt2Ph), [Zn4(PhPSiMe3)4Cl4(C4H8O)2] and [Zn4(PtBu2)4Cl4] AgCl reacts with Ph2PSiMe3 in the presence of tertiary Phosphines (PnBu2tBu, PMenPr2, PnPr3 and PEt3) to form the multinuclear complexes [Ag3(PPh2)3(PnBu2tBu)3] 1 , [Ag4(PPh2)4(PR3)4] (PR3 = PMenPr2 2 , PnPr3 3 ) and [Ag4(PPh2)4(PEt3)4]n 4 . In analogy to that ZnCl2 reacts with Ph2PSiMe3 and PRR′2 to form the multinuclear complexes [Zn4(PPh2)4Cl4(PRR′2)2] (PRR′2 = PMenPr2 5 , PnBu3 6 , PEt2Ph 7 ). Further it was possible to obtain the compounds [Zn4(PhPSiMe3)4Cl4(C4H8O)2] 8 and [Zn4(PtBu2)4Cl4] 9 by reaction of ZnCl2 with PhP(SiMe3)2 and tBu2PSiMe3, respectively. The structures were characterized by X-ray single crystal structure analysis. Crystallographic data see “Inhaltsübersicht”.  相似文献   

19.
Mono- and Binuclear Dinitrosyl Complexes of Molybdenum and Tungsten. Crystal Structures of (PPh3Me)2[WCl4(NO)2], (PPh3Me)2[MoCl3(NO)2]2, and (PPh3Me)2[WCl3(NO)2]2 The complexes (PPh3Me)2[MCl4(NO)2] (M = Mo, W), and (PPh3Me)2[MCl3(NO)2]2, respectively, are prepared by reactions of the polymeric compounds MCl2(NO)2 with triphenylmethylphosphonium chloride in CH2Cl2, forming green crystals. According to the IR spectra the nitrosyl groups are in cis-position in all cases. The tungsten compounds as well as (PPh3Me)2[MoCl3(NO)2]2 were characterized by structure determinations with X-ray methods. (PPh3Me)2[WCl4(NO)2]: space group C2/c, Z = 4. a = 1874, b = 1046, c = 2263 pm, β = 119.99°. Structure determination with 3492 independent reflexions, R = 0.057. The compound consists of PPh3Me ions, and anions [WCl4(NO)2]2? with the nitrosyl groups in cis-position (symmetry C2v). (PPh3Me)2[WCl3(NO)2]2: Space group C2/c, Z = 4. Structure determination with 2947 independent reflexions, R = 0.059. (PPH3Me)2[MoCl3(NO)2]2: Space group P1 , Z = 1. a = 989, b = 1134, c = 1186 pm; α = 63.25°, β = 80.69°, γ = 69.94°. Structure determination with 3326 independent reflexions, R = 0.046. The compounds consist of PPh3Me ions, and centrosymmetric anions [MCl3(NO)2]22?, in which the metal atoms are associated via MCl2M bridges of slightly different lengths. One of the NO groups is in an axial position, the other one in equatorial position (symmetry C2h).  相似文献   

20.
Transition Metal Phosphido Complexes. XII. Diphosphene Complexes (DRPE)Ni[η2-(PR′)2] and the Structure of (DCPE) NiP (SiMe3)2 LiP(SiMe3)2 reacts with the complexes (DRPE)NiCl2 1 (DRPE = R2PCH2CH2PR2; R = Et: DEPE a ; R = Cy: DCPE b ; R = Ph: DPPE c ) to form the diphosphene complexes (DRPE)Ni[η2-(PSiMe3)2] 5a–c . Using low temperature nmr measurements the monosubstitution products (DRPE)Ni[P(SiMe3)2]Cl 2a–c and the disubstitution products (DRPE)Ni[P(SiMe3)2]2 3a, 3c can be detected as intermediates. From the reaction of 1b the paramagnetic nickel(I) complex (DCPE)NiP(SiMe3)2 4b can be isolated. Reacting 1a, 1b with LiP(SiMe3)CMe3 the complexes (DRPE)Ni[P(SiMe3)CMe3]Cl 8a, 8b , which are analogous to 2 , and the nickel(0) diphosphine complex (DEPE)Ni[η1-P(SiMe3)CMe3P(SiMe3)CMe3] 9a can be detected n.m.r. spectroscopically, but no diphosphene complexes can finally be isolated. The diphosphene complexes (DRPE)Ni[η2(PPh)2] 10a-c are available from reactions of PhP(SiMe3)2with l a - c. MeP(SiMe,), reacts only with 1b to give a diphosphene complex (DCPE)Ni[η2(PMe)2] 11 b. Reacting [P(SiMe3)CMe3]2 with 1a-c the diphosphene complexes (DRPE)Ni[η2(PCMe3)2] 12a-c can be obtained. 4b crystallizes monoclinic in the space group P2Jc with a = 1228.6 pm, b = 2387.1 pm, c = 2621.8 pm, β = 92.16°, and Z = 8 formula units. The nickel atom is nearly planar coordinated by three phosphorus- atoms, the phosphorus atom of the terminal P(SiMe3)2 group is pyramidally coordinated. The Ni? P bond distances of the two four-coordinated phosphorus atoms are with 219.2 pm and 220.2 pm only slightly shorter than the corresponding distance of the P-atom of the P(SiMe3)2 group with 223.5 pm. N.m.r. and mass spectral data are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号