首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The [C4H6O] ion of structure [CH2?CHCH?CHOH] (a) is generated by loss of C4H8 from ionized 6,6-dimethyl-2-cyclohexen-1-ol. The heat of formation ΔHf of [CH2?CHCH?CHOH] was estimated to be 736 kJ mol?1. The isomeric ion [CH2?C(OH)CH?CH2] (b) was shown to have ΔHf, ? 761 kJ mol?1, 54 kJ mol?1 less than that of its keto analogue [CH3COCH?CH2]. Ion [CH2?C(OH)CH?CH2] may be generated by loss of C2H4 from ionized hex-1-en-3-one or by loss of C4H8 from ionized 4,4-dimethyl-2-cyclohexen-1-ol. The [C4H6O] ion generated by loss of C2H4 from ionized 2-cyclohexen-1-ol was shown to consist of a mixture of the above enol ions by comparing the metastable ion and collisional activation mass spectra of [CH2?CHCH?CHOH] and [CH2?C(OH)CH?CH2] ions with that of the above daughter ion. It is further concluded that prior to their major fragmentations by loss of CH3˙ and CO, [CH2?CHCH?CHOH]+˙ and [CH2?C(OH)CH?CH2] do not rearrange to their keto counterparts. The metastable ion and collisional activation characteristics of the isomeric allenic [C4H6O] ion [CH2?C?CHCH2OH] are also reported.  相似文献   

2.
Electron impact mass spectra were measured for five isomers of pyridinobenzanthrones and three isomers of benzobenzanthrones. The fragmentation pattern and intensity of M2+, [M – H]+, [M – CO]i+, [M – CO – H(or 2H)]i+ and [M – CO – HCN]i+ (i = 1, 2) ions indicated remarkable differences and very interesting features according to the isomers with or without nitrogen and condensation positions of a pyridino or benzo ring to the benzanthrone skeleton. Further, the competition of decompositions through [M – H]+, [M – CO] or [M – HCN] ions was confirmed by the observation of metastable ions and the appearance energies of fragment ions. Interesting observations from these results were expulsion of an H atom in close proximity to the area around an O?C group, a weak bonding interaction between sp2 C? H and an O?C group, inducing specific hydrogen rearrangement, and characteristic charge localization on heteroatoms.  相似文献   

3.
The energetics, metastable characteristics and daughter ion structures for the loss of small alkane molecules from ionized 2-propanol, 2-butanol and 3-pentanol have been examined in detail. [2-Propanol] ions lose CH4 to generate the keto and enol forms of [C2H4O] and the same daughter ions are produced by loss of C2H6 from [2-butanol]. Ionized 3-pentanol does not lose CH4 but readily eliminates C2H6 to produce the enol ion [CH3CH?CHOH]. The last reaction was shown to proceed by a simple 1,2 elimination mechanism in the μs time-frame; isotope effects are also discussed.  相似文献   

4.
The mechanism of water elimination from metastable molecular, [M ? CH3˙]+ and [M ? ring D]+˙ ions of epimeric 3-hydroxy steroids of the 5α-series has been elucidated. Deuterium labelling, the measurement of the translational energy released during the loss of water, and collision-induced decomposition mass-analysed kinetic energy spectrometry were the techniques used. It was found that the mechanisms of water loss from metastable M+˙ and [M ? ring D]+˙ ions is different from that from [M ? CH3˙]+ ions.  相似文献   

5.
Methyl 2-oxocycIoalkane carboxylate structures are proposed lor the [M ? MeOH] ions from dimethyl adipate, pimelate, suberate and azelate. This proposal is based on a comparison of the metastable ion mass spectra and the kinetic energy releases for the major fragmentation reaction of these species with the same data for the molecular ions of authentic cyclic β-keto esters. The mass spectra of α,α,α′,α′-d4-pimelic acid and its dimethyl ester indicate that the α-hydrogens are involved only to a minor extent in the formation of [M ? ROH] and [M ? 2ROH] ions, while these α-hydrogens are involved almost exclusively in the loss of ROH from the [M ? RO˙]+ ions (R = H or CH3). The molecules XCO(CH2)7COOMe (X = OH, Cl) form abundant ions in their mass spectra with the same structure as the [M ? 2MeOH] ions from dimethyl azelate.  相似文献   

6.
Cyclic polysulfides isolated from higher plants, model compounds and their electron impact induced fragment ions have been investigated by various mass spectrometric methods. These species represent three sets of sulfur compounds: C3H6Sx (x=1?6), C2H4Sx (x=1?5) and CH2Sx (x=1?4). Three general fragmentation mechanisms are discussed using metastable transitions: (1) the unimolecular loss of structural parts (CH2S, CH2 and Sx); (2) fragmentations which involve ring opening reactions, hydrogen migrations and recyclizations of the product ions ([M? CH3]+, [M? CH3S]+, [M? SH]+ and [M? CS2]); and (3) complete rearrangements preceding the fragmentations ([M? S2H]+ and [M? C2H4]). The cyclic structures of [M] and of specific fragment ions have been investigated by comparing the collisional activation spectra of model ions. On the basis of these results the cyclic ions decompose via linear intermediates and then recyclizations of the product ions occur. The stabilities of the fragment ions have been determined by electron efficiency vs electron energy curves.  相似文献   

7.
The mass spectral fragmentations of all eleven chlorinated methyl propanoates have been studied. Deuterium labelling and metastable ion analysis were used to elucidate the fragmentation mechanism. The molecular ion peaks of all compounds are small, except methyl 3,3-dichloropanoate (38%). In most cases α-cleavage gives the base peak [COOCH3]+, and the loss of a chlorine atom from the molecular ion is characteristic of the 3-chloro, 3,3-dichloro and 3,3,3-trichloro compounds. Metastable ions showed the losses of small neutral molecules such as CH3OH, CH2CO, CO2 and CO from the [M? Cl]+ ion. α-Cleavage and the loss of Cl˙ gives an intense [M? COOCH3? Cl] peak, which is the base peak in the spectra of the 2,3-dichloro and 2,3,3-trichloro compounds.  相似文献   

8.
The mass spectra of a series of β-ketosilanes, p-Y? C6H4Me2SiCH2C(O)Me and their isomeric silyl enol ethers, p-Y? C6H4Me2SiOC(CH3)?CH2, where Y = H, Me, MeO, Cl, F and CF3, have been recorded. The fragmentation patterns for the β-ketosilanes are very similar to those of their silyl enol ether counterparts. The seven major primary fragment ions are [M? Me·]+, [M? C6H4Y·]+, [M? Me2SiO]+˙, [M? C3H4]+˙, [M? HC?CCF3]+˙, [Me2SiOH]+˙ and [C3H6O]+˙ Apparently, upon electron bombardment the β-ketosilanes must undergo rearrangement to an ion structure very similar to that of the ionized silyl enol ethers followed by unimolecular ion decompositions. Substitutions on the benzene ring show a significant effect on the formation of the ions [M? Me2SiO]+˙ and [Me2SiOH]+˙, electron donating groups favoring the former and electron withdrawing groups favoring the latter. The mass spectral fragmentation pathways were identified by observing metastable peaks, metastable ion mass spectra and ion kinetic energy spectra.  相似文献   

9.
Metastable peaks have been used to study the fragmentation pathways of the methyl and trideuteriomethyl chloropropenoates and chloromethyl propenoate. The molecular ion peaks of the unsaturated esters are more intense than those of the saturated esters, α-Cleavage, [M? OCH3]+, produces the base peak in almost all compounds, the relative abundances of the additional peaks being low for chloromethyl propenoate. The losses of H2O, CH3. and COOH. indicate the isomerization of some ionized chloro esters to the chlorinated 2-butenoic acid molecular ions. An intense loss of H2O observed for methyl 2-chloropropenoate indicates its most facile isomerization, [ester] → [acid], whereas the isomerization in methyl trichloropropenoate could not be observed. The molecular ion of chloromethyl propenoate, however, also seems to partly rearrange to the chlorinated 3-butenoic acid ion, since the first field free region metastable peak shows a weak loss of CO. The new reaction pathways, i.e. the losses of CHO˙, CH2O and CH2CO from ionized chloromethyl propenoate, were detected.  相似文献   

10.
The mass spectral fragmentations of methyl mono- and dichlorobutanates have been studied. Deutrium labelling and metastable ion analysis were used to elucidate the fragmentation mechanisms. The molecular ion peaks of the esters are weak and show only in the spectra of the monochloro isomers. A McLafferty rearrangement gives the base peaks in the spectra of methyl 2-chloro-, 4-chloro- and 4,4-dichlorobutanoate; α-cleavage, [COOCH3]+, in methyl 2,2- and 2,4-dichlorobutanoate; [M? Cl]+, in methyl 3-chlorobutanoate; [M? Cl? HCl]+, in methyl 3,4-dichlorobutanoate; [M? Cl? CH2CO]+, in methyl 3,3-dichlorobutanoate and [M? Cl? COOCH3], in methyl erythro- and threo-2,3-dichlorobutanoate. The mass spectra of the stereoisomers are nearly identical, the loss of a chlorine atom and the McLafferty rearrangement giving the higher peaks in the spectrum of the threo form.  相似文献   

11.
Under electron impact, 3-aryl-4-hydroxyisoquinolines form [M – H]+, [M – CO]+ and [M – H – CO]+ ions with a subsequent elimination of HCN or CH3CN. A cyclic structure for the [M – H]+ ion is suggested. The primary act of fragmentation of the corresponding methyle ether derivatives is the loss of CH3?, as well as H?; the further fragmentatio is similar to that described above. It has been established that the unusual [M – H]+, [M – OH]+ and [M – CH5?]+ ions are formed when 8 fragments. Fragmentation schemes for all compounds are proposed based upon high resolution mass spectra and deuterated analogues.  相似文献   

12.
The decomposing molecular cations derived from (substituted) 2-nitrothiobenzamides fragment by complex rearrangement reactions. When the alkyl substituents (R) attached to N are methyl, the major fragmentations are [M]+˙ → [M? SO] and [M? SO] → [(M? SO)–R˙]+. This remains a basic pathway when R ? Et, but other rearrangements are also observed. For example, when R=Et, additional competitive processes are [M] → [M? HO˙]+ and [M] → [M? C2H4O]+˙.  相似文献   

13.
The individual steps of the consecutive reactions arising from metastable molecular ions, derived from vitamin D3, vitamin D2 and their respective provitamins (7-dehydrocholesterol, ergosterol), were examined in different field-free regions of a triple-sector mass spectrometer of B/E/E geometry. The comparison of the translational energy release (T) and the metastable peak shapes corresponding to these reactions, as well as unimolecular and collision-induced dissociation mass-analysed ion kinetic energy spectra, showed that there are probably two structures of the [M – H2O]+˙ and [M – CH3˙]+ ions depending upon whether the respective ions are formed in the ion source through high-energy reactions, or from the fragmentation of metastable molecular ions through slow, low-energy processes which occur in the first field-free region.  相似文献   

14.
The mass spectral fragmentation of methyl esters of E and Z isomers of 2,3-dichloro-, 2-bromo-3-chloro-, 3-bromo-2-chIoro- and 2,3-dibromopropenoic acids have been investigated. The M peak is shown with all isomers, the [M ? OCH3]+, [M ? X]+, [M ? OCH3 ? CO]+, [M ? OCH3 ? CO ? X] and [M ? OCH3 ? CO ? X ? X]+ ions constituting abundant peaks in all spectra. The results, particularly from the bromochloro isomers, show that a halogen atom is eliminated from the 3- rather than the 2- position and from the Z rather than the E isomer. Bromine as a bulky atom is preferentially lost.  相似文献   

15.
It is shown that a monotonically decreasing translational kinetic energy distribution predicted from the quasi-equilibrium theory for the unimolecular fragmentation ([CH2CO]+˙→[CH2]+˙ +CO) is reflected in an exponential shape for the metastable peak in contrast to the commonly observed Gaussian type profile.  相似文献   

16.
The isomeric ions [H2NC(H)O]+˙, [H2NCOH]+˙, [H3CNO]+˙ and [H2CNOH]+˙ were examined in the gas phase by mass spectrometry. Ab initio molecular orbital theory was used to calculate the relative stabilities of [H2NC(H)O]+˙, [H2NCOH]+˙, [H3NCO]+˙ and their neutral counterparts. Theory predicted [H2NC(H)O]+˙ to be the most stable ion. [H2NCOH]+˙ ions were generated via a 1,4-hydrogen transfer in [H2NC(O)OCH3]+˙, [H2NC(O)C(O)OH]+˙ and [H2NC(O)CH2CH3]+˙. Its metastable dissociation takes place via [H3NCO]+˙ with the isomerization as the rate-determining step. [H2CNOH]+˙ undergoes a rate-determining isomerization into [H3CNO]+˙ prior to metastable fragmentation. Neutralization-reionization mass spectrometry was used to identify the neutral counterparts of these [H3,C,N,O]+˙ ions as stable species in the gas phase. The ion [H3NCO]+˙ was not independently generated in these experiments; its neutral counterpart was predicted by theory to be only weakly bound.  相似文献   

17.
Fragmentation patterns resulting from electron impact ionization of 3-(2′-hydroxyethyl)quinolin-2(1H)-one, three of its monosubstituted derivatives and four of its disubstituted derivatives were studied. The molecular ion of quinolinone-2-etbanol undergoes initial fragmentation with the loss of OH·, H2O, CO, ·CHO, CH2O, CH2OH·, CH2?CHOH and HCNO species. The [M – CHO]+ ion is tentatively suggested to have been formed by the expulsion of H· from the [M – CO] ion and the [M - CHO]+ peak may be considered as diagnostic of a 2-quinolone-3-ethanol.  相似文献   

18.
It is demonstrated by means of collisionally activated decomposition (CAD) that [C3H5O]+ originating from metastable [C4H8O] ions are either acylium [C2H5CO]+ (a) or hydroxycarbenium [CH2CHCHOH]+ (b). Butanone gives exclusively a but 2-methyl-2-propen-1-ol, 2-buten-1-ol, 3-buten-1-ol, butanal and 2-methylpropanal lead to ion b. Both structures a and b are produced from 3-buten-2-ol. These results are discussed in conjunction with experimental and calculated (MINDO/3) thermodynamic data.  相似文献   

19.
Nitric oxide chemical ionization mass spectra of substituted benzenes obtained with the Townsend discharge technique were studied. There were four kinds of base peaks in the mass spectra, i.e. [M + NO]+˙, M+˙, [M ? H]+ and [M ? OR]+ (R = H, CH3). The formation of the specific ion [M + NO]+˙ was highly dependent on the kind of substituent, and it was produced more abundantly in the case of substitutions involving electron-accepting groups. The measure of [M + NO]+˙ production was evaluated from the value of the ratio [M + NO]+˙/M+˙. In mono-substitutions, it was clarified that the ratios of [M + NO]+˙/M +˙ were correlated with the Hammett substituent constant s?p or the electrophilic substituent constant s?p+. Monosubstitutions (C6H5R) and toluene substitutions (CH3C6H4R) could be classified into six groups in terms of base peak species, [M + NO]+˙/M+˙ ratios and substituents. In disubstitutions, the mass spectral patterns were governed by the combination of substituents. Mass spectral distinctions among ortho, meta and para isomers could be made in many cases.  相似文献   

20.
The potential energy surface for the [CH5N] system has been investigated using ab initio molecular orbital calculations with large, polarization basis sets and incorporating valence-electron correlation. Two [CH5N] isomers can be distinguished: the well known methylamine radical cation, [CH3NH2], and the less familiar methylenammonium radical cation, [CH2NH3]. The latter is calculated to lie 8 kJ mol?1 lower in energy. A substantial barrier (176 kJ mol?1) is predicted for rearrangement of [CH2NH3] to [CH3NH2]. In addition, a large barrier (202 kJ mol?1) is found for loss of a hydrogen radical from [CH2NH3] via direct N—H bond cleavage to give the aminomethyl cation [CH2NH2]+. These results are consistent with the existence of the methylenammonium ion [CH2NH3] as a stable observable species. The barrier to loss of a hydrogen radical from [CH3NH2] is calculated to be 140 kJ mol?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号