首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
New aromatic diamines having kink and crank structures, 2,2′-bis(p-aminophenoxy)biphenyl and 2,2′-bis(p-aminophenoxy)-1,1′-binaphthyl, were synthesized by the reaction of p-fluoronitrobenzene with biphenyl-2,2′-diol and 2,2′-dihydroxy-1,1′-binaphthyl, respectively, followed by catalytic reduction. Biphenyl-2,2′-diyl- and 1,1′-binaphthyl-2,2′-diyl-containing aromatic polyamides having inherent viscosities of 0.44–1.18 and 0.26–0.88 dL/g, respectively, were obtained either by the direct polycondensation or low-temperature solution polycondensation of the diamines with aromatic dicarboxylic acids (or diacid chlorides). These polymers were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, m-cresol, and pyridine. Transparent, pale yellow, and flexible films of these polymers could be cast from the DMAc or NMP solutions. These aromatic polyamides containing biphenyl and binaphthyl units had glass transition temperatures in the range of 215–255 and 266–303°C, respectively. They began to lose weight at ca. 380°C, with 10% weight loss being recorded at about 470°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
New aromatic dicarboxylic acids having kink and crank structures, 2,2′-bis(p-carboxyphenoxy) biphenyl and 2,2′-bis(p-carboxyphenoxy)-1,1′-binaphthyl, were synthesized by the reaction of p-fluorobenzonitrile with biphenyl-2,2′-diol and 2,2′-dihydroxy-1,1′-binaphthyl, respectively, followed by hydrolysis. Biphenyl-2,2′-diyl-and 1,1′-binaphthyl-2,2′-diyl-containing aromatic polyamides having inherent viscosities of 0.58–1.46 dL/g and 0.63–1.30 dL/g, respectively, were obtained by the low-temperature solution polycondensation of the corresponding diacid chlorides with aromatic diamines. These polymers were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, m-cresol, and pyridine. Transparent, pale yellow, and flexible films of these polymers could be cast from the DMAc or NMP solutions. These aromatic polyamides containing biphenyl and binaphthyl units had glass transition temperatures in the range of 210–272 and 260–315°C, respectively. They began to lose weight around 380°C, with 10% weight loss being recorded at about 450°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
Novel, soluble aromatic polyamides and copolyamides containing tetraphenylethylene units were prepared by the low temperature solution polycondensation of 1,1-bis(4-aminophenyl)-2,2-diphenylethylene and aromatic diamines with various aromatic diacid chlorides. Highmolecular-weight polyamides having inherent viscosities of 0.6–1.5 dL/g and number-average molecular weight above 21000 were obtained quantitatively. These polymers were readily soluble in various solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide (DMAc), and dimethyl sulfoxide and gave pale yellow, transparent, flexible films by casting from DMAc solution. The polymers had glass transition temperatures between 290 and 340°C, and started to lose weight around 400°C, with 10% weight loss being recorded at about 470°C in air.  相似文献   

4.
A novel aromatic dicarboxylic acid monomer, 4,4′-(2,3-naphthalenedioxy)-dibenzoic acid ( 3 ), was prepared by the fluorodisplacement reaction of p-fluorobenzonitrile with 2,3-dihydroxynaphthalene in N,N-dimethylformamide (DMF) in the presence of potassium carbonate followed by alkaline hydrolysis of the intermediate dinitrile. A series of novel aromatic polyamides containing ortho-linked aromatic units in the main chain were synthesized by the direct polycondensation of diacid 3 and a variety of aromatic diamines using triphenyl phosphite and pyridine as condensing agents in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The resulting polyamides had inherent viscosities higher than 0.74 and up to 2.10 dL/g. All of these polyamides were soluble in polar solvents, such as NMP, DMF, N,N-dimethylacetamide (DMAc), and dimethyl sulfoxide. Transparent, flexible, and tough films could be cast from their DMAc or NMP solutions. The solvent-cast films had high tensile strengths and moduli. Extensions to break were relatively low, except for the polymers derived from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and 3,4′-oxydianiline, which had elongations of 82 and 62%, respectively. Except for the polyamide based on p-phenylenediamine, all the other polyamides were amorphous in nature. All the polymers are thermally stable to temperatures in excess of 450°C in either air or nitrogen atmosphere. The polymers exhibited glass transition temperatures ranging from 183 to 260°C and decomposition temperatures (10% weight loss) ranging from 462–523°C in air and 468–530°C in nitrogen. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3385–3391, 1997  相似文献   

5.
4,4′-(2,7-Naphthalenedioxy)dibenzoic acid, a new aromatic dicarboxylic acid monomer, was prepared starting from 2,7-dihydroxynaphthalene and p-fluorobenzonitrile in three steps. Using triphenyl phosphite (TPP) and pyridine as condensing agents, a series of novel aromatic polyamides were synthesized by the direct polycondensation of the diacid monomer and aromatic diamines in N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The resulting polyamides had inherent viscosities ranging from 0.48 to 0.67 dL/g. Most of these polyamides were readily soluble in polar solvents, such as NMP and N,N-dimethylacetamide (DMAc). Transparent, flexible, and tough films were cast from their DMAc solutions. They had tensile strengths of 65–70 MPa, elongations to break of 5–7%, and initial moduli of 1.4–1.6 GPa. Most of these polymers proved to be amorphous, with glass transition temperatures in the range between 143–227°C. Thermogravimetric analysis (TG) showed that all the polyamides were stable up to 450°C in both air and nitrogen atmospheres. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1469–1478, 1997  相似文献   

6.
A novel hexamethylspirobichroman (HMSBC) unit-containing dicarboxylic acid, 6,6′-bis(4-carboxyphenoxy)-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman ( 3 ), was derived from nucleophilic substitution of p-fluorobenzonitrile with the phenolate ion of 6,6′-dihydroxy-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman ( 1 ), followed by alkaline hydrolysis of the intermediate bis(ether nitrile). Using TPP and pyridine as condensing agents, a series of polyamides with inherent viscosities in the range of 0.82–1.14 dL/g were prepared by the direct polycondensation of dicarboxylic acid 3 with various aromatic diamines. All the obtained polymers were noncrystalline and soluble in various organic solvents such as N,N-dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP). Except for the polymer derived from benzidine, the other polyamides could be solution cast into transparent and tough films, and their tensile strengths, elongations at break, and tensile moduli were in the range of 56–76 MPa, 4–59%, and 1.6–2.0 GPa, respectively. These polyamides had glass transition temperatures in the range of 183–200°C with 10% weight loss above 420°C. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1479–1486, 1997  相似文献   

7.
New fluorine-containing aromatic polyamides with inherent viscosities of 0.4–1.8 dL/g were prepared by the low temperature solution polycondensation of tetrafluoroisophthaloyl and tetrafluoroterephthaloyl chlorides with N,N′-bis(trimethylsilyl)-substituted aromatic diamines. The aromatic polyperfluoroisophthalamides were amorphous polymers with glass transition temperatures around 280°C, whereas the polyperfluoroterephthalamides were crystalline. Most of these aromatic polyamides were soluble in organic solvents, and began to decompose around 330°C in air or nitrogen atmosphere.  相似文献   

8.
A series of novel aromatic polyamides containing 2,2′-bipyridine moiety were synthesized by polycondensation of 2,2′-bipyridine-5,5′-dicarboxylic acid ( 2 ) with various aromatic diamines in hexamethylphosphoramide (HMPA) containing lithium chloride. The resulting polyamide solutions in 98% sulfuric acid and in HMPA-LiCl exhibited lyotropic liquid crystal phases. The phase transition behaviors were studied by polarizing microscopy and X-ray diffraction. The polyamides also formed metal complexes with cis-dichlorobis(bipyridine)ruthenium dihydrate [cis-Ru(bpy)2Cl2 · 2H2O] which was supported by changes in electronic spectra.  相似文献   

9.
A new polymer-forming monomer, 2,5-bis(4-carboxyphenyl)—3,4-diphenylthiophene, was synthesized either by the Friedel—Crafts reaction of tetraphenylthiophene with oxalyl chloride directly, or by the Friedel—Crafts acetylation of tetraphenylthiophene, followed by oxidation. The low temperature solution polycondensation of 2,5-bis(4-chloroformylphenyl)—3,4-diphenylthiophene with various aromatic diamines in N,N-dimethylacetamide (DMAc) afforded tetraphenylthiophene-containing aromatic polyamides with inherent viscosities of 0.5–1.0 dL/g. Copolyamides were obtained from a mixture of the diacid chloride and isophthaloyl or terephthaloyl chloride. Except for two polyamides, all the others were readily soluble in amidetype solvents including DMAc, and were cast into transparent and flexible films. These polymers had glass transition at around 300°C. Thermal stability of the polymers was evaluated by thermogravimetry which showed no weight loss below 390°C in both air and nitrogen atmospheres.  相似文献   

10.
Two new aromatic diamines, 2,2′-dimethyl-4,4′-diaminoazobenzene [benzenamine-(3,3′-dimethyl-4,4′-azobis)] and 2,2′-dichloro-4,4′-diaminoazobenzene [benzenamine-(3,3′-dichloro-4,4′-azobis)] were synthesized and their structures confirmed by IR, UV-visible, 1H-NMR, 13C-NMR, and mass spectra. With these diamines, 16 aromatic polyamides were synthesized by both low-temperature solution and phosphorylation polycondensation methods. The polymers were characterized by viscosity, solubility, IR, UV visible, TGA, and DTA studies.  相似文献   

11.
A new aromatic dicarboxylic acid, 1,4-bis (p-carboxyphenoxy)naphthyl ( 3 ), was synthesized by the reaction of p-fluorobenzonitrile with 1,4-naphthalenediol, followed by hydrolysis. Aromatic polyamides having inherent viscosities of 1.27–2.22 dL/g were prepared by the triphenyl phosphite activated polycondensation of diacid 3 with various aromatic diamines. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents including N,N-dimethyl-acetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and m-cresol. Transparent, tough, and flexible films of these polymers could be cast from the DMAc or NMP solutions. The cast films had tensile strengths ranging from 64–104 MPa, elongations-at-break from 6 to 10%, and initial moduli from 1.52 to 2.14 GPa. These polyamides had glass transition temperatures in the range of 195 to 240°C. Almost all polymers were thermally stable up to 400°C, with 10% weight loss being recorded above 480°C in air and nitrogen atmospheres. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2273–2280, 1997  相似文献   

12.
Two ether-sulfone-dicarboxylic acids, 4,4′-[sulfonylbis(2,6-dimethyl-1,4-phenylene)dioxy]dibenzoic acid (Me- III ) and 4,4′-[sulfonylbis(1,4-phenylene)dioxy]-dibenzoic acid ( III ), were prepared by the fluorodisplacement of 4,4′-sulfonylbis(2,6-dimethylphenol) and 4,4′-sulfonyldiphenol with p-fluorobenzonitrile, and subsequent alkaline hydrolysis of intermediate dinitriles. Using triphenyl phosphite (TPP) and pyridine as condensing agents, aromatic polyamides containing ether and sulfone links were prepared by the direct polycondensation of the dicarboxylic acids with various aromatic diamines in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The inherent viscosities of the resulting polymers were above 0.4 dL/g and up to 1.01 dL/g. Most of the polyamides were readily soluble in polar solvents such as NMP, N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), and dimethyl sulfoxide (DMSO), and afforded tough and transparent films by solution-casting. Most of the polymers showed distinct glass transition on their differential scanning calorimetry (DSC) curves, and their glass transition temperatures (Tg) were recorded between 212–272°C. The methyl-substituted polyamides showed slightly higher Tgs than the corresponding unsubstituted ones. The results of the thermogravimetry analysis (TGA) revealed that all the polyamides showed no significant weight loss before 400°C, and the methyl-substituted polymers showed lower initial decomposition temperatures than the unsubstituted ones. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2421–2429, 1997  相似文献   

13.
Novel aromatic polyamides, having inherent viscosities of 0.76-2.31 dL/g, were synthesized by the low temperature solution polycondensation of a new highly phenylated diamine monomer having an imidazolinone group, 1,3-bis(4-aminophenyl)-4,5-diphenylimidazoline-2-one (TPIDA), with various aromatic diacid chlorides. All the polymers were amorphous, and most of the polyamides were readily soluble in organic solvents such as N-methyl–2-pyrrolidone, N,N-dimethylacetamide (DMAc), and m-cresol. Flexible and tough films could be prepared from the DMAc solutions of these soluble aromatic polyamides. The glass transition temperatures and 10% weight loss temperatures under nitrogen of the polyamides were in the range of 275–315°C and 430–505°C, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
A series of novel aromatic diamines ( 2 – 4 ) containing the alkyl‐, aryl, or chloro‐substituted group of phthalazinone segments were synthesized via two synthetic steps starting from 4‐(3‐R‐4‐hydroxyphenyl)‐2,3‐phthalazinone‐1 (R = Ph, CH3, Cl). Three series of aromatic polyamides containing phthalazinone moieties were prepared through diamines 2 – 4 reacting with different aromatic dicarboxylic acids via a direct Yamazaki–Higashi phosphorylation polycondensation reaction. The resulting aromatic polyamides had inherent viscosities in the range of 0.40–0.76 dL/g. The thermal property of the polyamides was examined with DSC and thermogravimetric analysis. The glass‐transition temperatures of these polyamides ranged from 298 to 340 °C. The 10% mass‐loss temperature was above 405 °C under nitrogen. Structures of monomers 2 – 4 and the polymers were confirmed by Fourier transform infrared spectroscopy, 1H NMR, and mass spectrometry. Good solubility of these polymers in polar solvents such as N‐methylpyrrolidone, dimethylformamide, dimethylacetamide (DMAc), and m‐cresol was observed, and tough, flexible films were obtained from the polymer's DMAc solutions. The effect of the substituted group on the physical property of polymers was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2026–2030, 2004  相似文献   

15.
A new dicarboxylic acid having a kinked structure was synthesized from the condensation of 2,2′-bis(4-aminophenoxy)biphenyl and trimellitic anhydride. A series of biphenyl-2,2′-diyl-containing aromatic poly(amide-imide)s having inherent viscosities of 0.23–0.94 dL/g was prepared by the triphenyl phosphite activated polycondensation from the diimide-diacid II with various aromatic diamines in a medium consisting of N-methyl-2-pyrrolidone (NMP), pyridine, and calcium chloride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents including NMP and N,N-dimethylacetamide (DMAc). Transparent, flexible, and tough films of these polymers could be cast from DMAc or NMP solutions. The glass transition temperatures of these polymers were in the range of 227–261°C and the 10% weight loss temperatures were above 520°C in nitrogen. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1169–1177, 1998  相似文献   

16.
Novel examples were presented of the use in polyamide synthesis of active 2-benzothiazolyl dithiolesters for which aminolysis is assisted by a neighboring group. Solution polycondensation of new dithiolesters, 2,2′-(adipoyldithio)bisbenzothiazole and 2,2′-(isophtahloyldithio)bisbenzothiazole, with both aliphatic and aromatic diamines in polar aprotic solvents (N-methyl-2-pyrrolidone and hexamethylphosphoramide) took place rapidly at room temperature yielding polyamides with high molecular weight. The interfacial polycondensation in a chloroform–water system was also successful for polyamide formation. S,S′-Di-p-nitrophenyl dithioisophthalate reacted much more slowly toward diamines than the 2-benzothiazolyl dithiolesters. Prior to polymer synthesis, the aminolysis of active monothiolesters was carried out as a model compound study.  相似文献   

17.
A novel spirobichroman unit containing dietheramine, 6,6′-bis(4-aminophenoxy)-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman ( 3 ), was prepared by the nucleophilic substitution of 6,6′-dihydroxy-4,4,4′,4′,7,7′-hexamethyl-2,2′-spirobichroman with p-chloronitrobenzene in the presence of K2CO3 followed by hydrazine catalytic reduction of the intermediate dinitro compound. A series of polyimides were synthesized from diamine 3 and various aromatic dianhydrides by a conventional two-stage procedure through the formation of poly(amic-acid)s followed by thermal imidization. The intermediate poly(amic-acid)s had inherent viscosities of 1.00–2.78 dL/g. All the poly-(amic-acid)s could be thermally cyclodehydrated into flexible and tough polyimide films, and some polyimides were soluble in polar solvents such as N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), and N,N-dimethylformamide (DMF). These polyimides had glass transition temperatures (Tg) in the range of 236–256°C, and 10% weight loss occurred up to 450°C. Furthermore, a series of polyamides and poly(amide-imide)s with inherent viscosities of 0.71–2.29 dL/g were prepared by direct polycondensation of the diamine 3 with various aromatic dicarboxylic acids and imide ring-containing dicarboxylic acids by means of triphenyl phosphite and pyridine. All the polyamides and poly(amide-imide)s were readily soluble in polar solvents such as DMAc, and tough and flexible films could be cast from their DMAc solutions. These polymers had glass transition temperatures in the range of 137–228°C and 10% weight loss temperatures in the range of 419–443°C in air and 404–436°C in nitrogen, respectively. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1487–1497, 1997  相似文献   

18.
A novel type of polyamides, N‐benzoylated wholly aromatic polyamides, were synthesized by low‐temperature solution polycondensation of a new aromatic bis(imidoyl) chloride, 4,4′‐oxydianilinobis(benzimidoyl) chloride, with aromatic dicarboxylic acids, 4,4′‐oxydibenzoic acid and isophthalic acid. Compared with the conventional all aromatic polyamides and also N‐phenylated wholly aromatic polyamides, these N‐benzoylated aramides exhibit better solubility in organic solvents, lower glass transition temperatures and thermal stability.  相似文献   

19.
The synthesis and structure-property relations of a number of novel substituted paralinked aromatic homopolyamides and copolyamides are described. The synthesis of the polyamides was carried out by polycondensation of activated N,N'-bis-(trimethylsilyl) substitued aromatic diamines and aromatic diacid chlorides. In order to improve the solubility and to lower melting temperatures, novel arylsubstituted terephthalic acids moieties, such as p-terphenyl-2,5-dicarboxylic acid and o-terphenyl-2,5-dicarboxylic acid, were used in combination with substituted and noncoplanar diamines. Depending on the chemical structure, polyamides with very high solubility (up to 40% w/w) in polar aprotic solvents such as N,N-dimethylacetamide without the addition of inorganic salts were obtained. Lyotropic liquid crystalline behavior was observed for the first time in polyamides which contain noncoplanar biphenylene units.  相似文献   

20.
A series of N-methyl-substituted aromatic polyamides derived from the secondary aromatic diamines 4,4′-bis(methylamino)diphenylmethane, 3,3′-bis(methylamino)diphenylmethane, 4,4′-bis(methylamino)benzophenone or 3,3′-bis(methylamino)benzophenone and isophthaloyl dichloride, and terephthaloyl dichloride or 3,3′-diphenylmethane dicarboxylic acid dichloride was prepared by high-temperature solution polymerization in s-tetrachloroethane. Compared with analogous unsubstituted and partly N-methylated aromatic polyamides, the full N-methylated polyamides exhibited significantly lower glass transition temperatures (Tg), reduced crystallinity, improved thermal stability, and good solubility in chlorinated solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号