首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phase equilibria in the three-component systems LiBr-LiVO3-Li2MoO4 and LiBr-Li2SO4-Li2MoO4 have been studied using differential thermal analysis (DTA). Eutectic compositions have been determined (mol %): in the system LiBr-LiVO3-Li2MoO4, 56.0 LiBr, 22.0 LiVO3, and 22.0 Li2MoO4 with a melting temperature of 413°C; and in the system LiBr-Li2SO4-Li2MoO4, 65.0 LiBr, 14.0 Li2SO4, and 21.0 Li2MoO4 with a melting temperature of 421°C. Phase fields have been demarcated.  相似文献   

2.
Phase equilibria in the LiF-LiBr-LiVO3-Li2MoO4 four-component system were studied using differential thermal analysis (DTA). The eutectic composition (mol %) was determined as LiF, 19.3; LiBr, 45.0; LiVO3, 32.7, Li2MoO4, 3.0 with a melting temperature of 394°C.  相似文献   

3.
The LiF-LiVO3-Li2SO4-Li2MoO4 four-component system was studied using differential thermal analysis. The eutectic composition was determined (mol %): LiF, 25.0; LiVO3, 43.8; Li2SO4, 14.8; Li2MoO4, 16.5. The eutectic melting point is 428°C; the enthalpy of melting is 260 J/g.  相似文献   

4.
Phase equilibria in the LiF-LiBr-LiVO3-Li2MoO4-Li2SO4 quinary system were studied by differential thermal analysis. A eutectic composition was determined to be 4.0 mol % LiF, 38.4 mol % LiBr, 30.8 mol % LiVO3, 19.2 mol % Li2MoO4, and 7.6 mol % Li2SO4 with a melting point of 372°C and an enthalpy of melting of 164 ± 7 kJ/kg.  相似文献   

5.
Phase equilibria in the LiF-LiCl-Li2SO4-Li2MoO4 quaternary system have been investigated by differential thermal analysis. The eutectic composition (in mol %) has been determined as LiF, 16.2; LiCl, 51.5; Li2SO4, 16.2; and Li2MoO4, 16.2. The melting point of the eutectic is 402°C, and the enthalpy of melting is 291 J/g.  相似文献   

6.
Phase equilibria in the LiF-LiBr-LiVO3 and LiBr-Li2SO4-LiVO3 systems have been investigated by differential thermal analysis. Eutectic compositions have been revealed (mol %). In the LiF-LiBr-LiVO3 system, 16.8% LiF, 52.0% LiBr, 31.2% LiVO3 with a melting point of 428°C; in the LiBr-Li2SO4-LiVO3 system, 52.0% LiBr, 38.0% LiVO3, 10.0% Li2SO4 with a melting point of 444°C. Crystallization fields of the phases have been demarcated.  相似文献   

7.
Phase equilibria in the LiF-LiBr-Li2SO4-Li2MoO4 system have been investigated by differential thermal analysis. The eutectic composition has been determined (mol %): LiF, 13.3; LiBr, 62.0; Li2SO4, 15.4; and Li2MoO4, 9.3. The melting point is 415°C, and the ehthalpy of melting is 200 kJ/kg. Original Russian Text ? T.V. Gubanova, E.I. Frolov, E.G. Danilushkina, I.K. Garkushin, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 6, pp. 1037–1042.  相似文献   

8.
The phase composition has been studied and an equilibrium phase diagram has been designed for the Al2O3-Li2O-R2O5 (R = Ta or Nb) systems in the subsolidus region up to 1000°C and 85 mol % Li2O. New phases with the composition Li1+x Al1?x O2?x , where x = 0–0.67, have been found.  相似文献   

9.
Phase equilibria in the LiBr–LiVO3–Li2MoO4–KBr quaternary system (the stable tetrahedron of the quaternary reciprocal system Li, K || Br, VO3, MoO4) were studied by differential thermal analysis. The composition and melting point of a quaternary eutectic were determined: 56.7 mol % LiBr, 1.5 mol % LiVO3, 4.9 mol % Li2MoO4, 36.9 mol % KBr, 321°C.  相似文献   

10.
The subsolidus region of the Ag2MoO4-MgMoO4-Al2(MoO4)3 ternary salt system has been studied by X-ray phase analysis. The formation of new compounds Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 (0 ≤ x ≤ 0.4) and AgMg3Al(MoO4)5 has been determined. The Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 variable-composition phase is related to the NASICON type structure (space group R \(\bar 3\) c). AgMg3Al(MoO4)5 is isostructural to sodium magnesium indium molybdate of the same formula unit and crystallizes in triclinic system (space group P \(\bar 1\), Z = 2) with the following unit cell parameters: a = 9.295(7) Å, b = 17.619(2) Å, c = 6.8570(7) Å, α = 87.420(9)°, β = 101.109(9)°, γ = 91.847(9)°. The compounds Ag1 ? x Mg1 ? x Al1 + x (MoO4)3 and AgMg3Al(MoO4)5 are thermally stable up to 790 and 820°C, respectively.  相似文献   

11.
The binary systems NaBr-Na2MoO4 and NaBr-Na3ClMoO4 and the ternary system NaCl-NaBr-Na2MoO4 have been studied using physicochemical methods (DTA and powder X-ray diffraction). The compositions, melting points, and heats of phase transitions have been determined for three invariant points. The liquidus surface of the ternary system consists of the fields of sodium molybdate, Na3ClMoO4, and sodium chloride and bromide solid solutions. The eutectics melt at 531, 612, and 524°C; the respective heats of phase transitions are 149.27, 167.55, and 215.38 J/g.  相似文献   

12.
Electrical conductivity in the monoclinic Li2TiO3, cubic Li1.33Ti1.67O4, and in their mixture has been studied by impedance spectroscopy in the temperature range 20–730 °C. Li2TiO3 shows low lithium ion conductivity, σ300≈10–6 S/cm at 300 °C, whereas Li1.33Ti1.67O4 has 3×10–8 at 20 °C and 3×10–4 S/cm at 300 °C. Structural properties are used to discuss the observed conductivity features. The conductivity dependences on temperature in the coordinates of 1000/T versus logeT) are not linear, as the conductivity mechanism changes. Extrinsic and intrinsic conductivity regions are observed. The change in the conductivity mechanism in Li2TiO3 at around 500–600 °C is observed and considered as an effect of the first-order phase transition, not reported before. Formation of solid solutions of Li2– x Ti1+ x O3 above 900 °C significantly increases the conductivity. Irradiation by high-energy (5 MeV) electrons causes defects and the conductivity in Li2TiO3 increases exponentially. A dose of 144 MGy yields an increase in conductivity of about 100 times at room temperature. Electronic Publication  相似文献   

13.
The 950°C isothermal section of the InPO4-Na3PO4-Li3PO4 ternary system was studied and constructed; one-, two, and three-phase fields are outlined. Five solid-solution regions exist in the system: solid solutions based on the complex phosphate LiNa5(PO4)2 (olympite structure), the indium ion stabilized high-temperature Na3PO4 phase (Na3(1 − x)In x (PO4); space group Fm [`3]\bar 3 m), the complex phosphate Na3In2(PO4)3, and the α and β phases of the compound Li3In2(PO4)3. A narrow region of melt was found in the vicinity of eutectic equilibria. All the phases detected in the system are derivatives of phases existing in the binary subsystems. Isovalent substitution of lithium for sodium in Na3In2(PO4)3 leads to a significant increase in the region of a NASICON-like solid solution.  相似文献   

14.
The phase equilibrium in the LiCl-LiBr-LiVO3-Li2MoO4 quaternary system was studied by differential thermal analysis. The composition corresponding to the minimum in the curve of monovariant equilibria of the quaternary system was determined to be 10.6 mol % LiCl, 38.0 mol % LiBr, 30.3 mol % LiVO3, and 21.1 mol % Li2MoO4, with the melting point at 389°C.  相似文献   

15.
Phase equilibria in theLiF-LiBr-LiVO3-Li2SO4 four-component system were studied using dif ferential thermal analysis (DTA). The eutectic composition (mol %) was determined as LiF, 20.0; LiBr, 45.7; LiVO3, 25.7; Li2SO4, 8.6 with a melting temperature of 403°C and a specific enthalpy of melting of 216 kJ/kg.  相似文献   

16.
The LiF–KBr–KVO3–K2MoO4 secant tetrahedron of the Li,K||F,Br,VO3,MoO4 five-component reciprocal system was studied by differential thermal analysis. The composition corresponding to the quaternary eutectic was determined (mol %): LiF, 7.2; KBr, 16.8; KVO3, 66.5; and K2MoO4, 9.5. The eutectic melting temperature was found to be 419°С.  相似文献   

17.
A ternary salt system Rb2MoO4-Eu2(MoO4)3-Hf(MoO4)2 was studied in the subsolidus area by X-ray phase analysis. A novel ternary molybdate, Rb4.98Eu0.86Hf1.11(MoO4)6, formed in the system. The Rb4.98Eu0.86Hf1.11(MoO4)6 rubidium-europium-hafnium molybdate crystals were grown by solution-melt crystallization under the spontaneous nucleation conditions. The structure and composition of this compound were refined by single crystal X-ray diffraction (X8 APEX automated diffractometer, MoK α radiation, 1753 F(hkl), R = 0.0183). The crystals are trigonal, a = b = 10.7264(1) Å, c = 38.6130(8) Å, V = 3847.44(9) Å3, Z = 6, space group R \(\bar 3\) c. The three-dimensional mixed framework of the structure comprises Mo tetrahedra and two types of octahedra, (Eu,Hf)O6 and HfO6. The large cavities of the framework include two types of the rubidium atom. The distribution of the Eu3+ and Hf4+ cations over two crystallographic positions was refined.  相似文献   

18.
Potassium oxosulfatovanadate(V) K3VO2(SO4)2 has been obtained by solid-phase synthesis from K2SO4, K2S2O7, and V2O5 (2: 1: 1), and its formation conditions, crystal structure, and physiochemical properties have been studied. The conversions of K3VO2(SO4)2 in contact with potassium vanadates and other potassium oxosulfatovanadates(V) are considered in terms of phase relations in the K2O-V2O5-SO3 system, which models the active component of vanadium catalysts for sulfur dioxide oxidation into sulfur trioxide. The X-ray diffraction pattern of K3VO2(SO4)2 is indexed in the monoclinic system (space group P21) with unit cell parameters of a = 10.0408(1) Å, b = 7.2312(1) Å, c = 7.3821(1) Å, β = 104.457(1)°, Z = 2, and V = 519.02 Å3. The crystal structure of K3VO2(SO4)2 is built from [VO2(SO4)2]3? complex anions, in which the vanadium atom is in an octahedral oxygen environment formed by two terminal oxygen atoms (V-O(6) = 1.605(7) Å, V-O(10) = 1.619(7) Å and four oxygen atoms of the two chelating sulfate anions. The vibrational spectra of K3VO2(SO4)2 are analyzed using these structural data.  相似文献   

19.
Possibility of substituting barium ions with strontium ions in the stratified sheelite structure of Li3Ba2R3(MoO4)8 (sp. gr. C2/c) was examined. The molybdates Li3BaSrR3(MoO4)8 were synthesized and studied by X-ray diffraction analysis, differential-thermal analysis, and IR spectroscopy.  相似文献   

20.
Synthesis was performed and physicochemical properties were studied for the M4V2O3(SO4)4 complexes, where M = K, Rb, or Cs. Their crystal structures were determined using the set of data from X-ray diffraction and neutron diffraction studies. All compounds crystallize in a triclinic lattice (space group \(P\bar 1\), Z = 2) with the parameters: a = 7.7688(2), 7.8487(1), 8.1234(1) Å; b = 10.4918(3), 10.8750(2), 11.1065(1) Å; c = 11.9783(4), 12.1336(2), and 11.8039(1) Å; α = 76.600(2)°, 77.910(1)°, 79.589(1)°; β = 75.133(2)°, 75.718(1)°, 87.939(1)°; γ = 71.285(2)°, 72.189(1)°, 75.567(1)°; V = 881.78(5), 945.42(3), 1014.34(2) Å3 for K, Rb, Cs, respectively. The structure of M4V2O3(SO4)4 was found to be formed by discrete complex anions V2O3(SO4) 4 4? incorporating two oxygen-bridged vanadium atoms in a distorted octahedral oxygen environment. The sulfate groups are coordinated by the vanadium atoms in the chelating mode with a large scatter of S-O interatomic distances and OSO angles. Every VO6 octahedron has a short terminal vanadium-oxygen bond with a length of about 1.6Å. The V2O3(SO4) 4 4? complex anions in potassium and rubidium compounds differ from that in Cs4V2O3(SO4)4 in the type of symmetry and mutual spatial orientation. The vibrational spectra were presented and interpreted in line with the structural analysis data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号