首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetic parameters of photoinduced electron transfer reaction of two phenothiazine dyes, methylene blue and methylene green with titanium trichloride, were determined in water and different aqueous-alcoholic solvents at different acidities by using a specially designed optical system. The rate of photoinduced electron transfer reaction was measured by determining the quantum yield of the reaction. The methylene green had a higher reactivity as compared to methylene blue with titanium trichloride. The graphical analysis showed that the reaction of dye with titanium trichloride follows pseudo–first-order kinetics. A reaction mechanism was proposed by considering the different excited states of dye and their possible interaction with the solvent and titanium trichloride. The different steps in the reaction mechanism were taken into consideration for deriving rate equations, which were used to determine the different rate constants in the reaction mechanism in different solvents.  相似文献   

2.
The amino alcohol meglumine solubilizes organic compounds in water and enforces the formation of electron donor acceptor (EDA) complexes of haloarenes with indoles, anilines, anisoles or thiols, which are not observed in organic solvents. UV-A photoinduced electron transfer within the EDA complexes induces the mesolytic cleavage of the halide ion and radical recombination of the arenes leading, after rearomatization and proton loss to C−C or C−S coupling products. Depending on the substitution pattern selective and unique cross-couplings are observed. UV and NMR measurements reveal the importance of the assembly for the photoinduced reaction. Enforced EDA aggregate formation in water allows new activation modes for organic photochemical synthesis.  相似文献   

3.
4.
Excited state proton transfer (ESPT) in biologically relevant organic molecules in aqueous environments following photoexcitation is very crucial as the reorganization of polar solvents (solvation) in the locally excited (LE) state of the organic molecule plays an important role in the overall rate of the ESPT process. A clear evolution of the two photoinduced dynamics in a model ESPT probe 1-naphthol (NpOH) upon ultrafast photoexcitation is the motive of the present study. Herein, the detailed kinetics of the ESPT reaction of NpOH in water clusters formed in hydrophobic solvent are investigated. Distinct values of time constants associated with proton transfer and solvent relaxation have been achieved through picosecond-resolved fluorescence measurements. We have also used a model solvation probe Coumarin 500 (C500) to investigate the dynamics of solvation in the same environmental condition. The temperature dependent picosecond-resolved measurement of ESPT of NpOH and the dynamics of solvation from C500 identify the magnitude of intermolecular hydrogen bonding energy in the water cluster associated with the ultrafast ESPT process.  相似文献   

5.
The photo-oxidation of perylene in aqueous solutions of a polymeric photocatalyst was investigated to probe the mechanism of polycyclic aromatic hydrocarbon degradation. Perylene and other hydrophobic molecules are efficiently solubilized in aqueous polymer solutions with distribution coefficients as high as 4 x 106. The rate of perylene photo-oxidation was much more rapid in aqueous polymer solutions than in organic solvents. In organic solvents, 102 sensitizers (rose bengal) had little effect on the reaction, but electron acceptors, such as dicyanobenzene, caused an acceleration in rate. Naphthoquinone was suggested as a potential electron acceptor in the naphthalene-containing polymer, and it was shown to be formed in small concentrations by polymer oxidation. It was concluded that the polymer plays several key functions in perylene photo-oxidation: (1) solubilization of the hydrophobic molecule; (2) energy migration through the polymer coil and energy transfer, providing additional photochemical energy to the reactants; (3) the enhancement of oxidation by photoinduced electron transfer via provision of an electron acceptor and facilitation of charge separation.  相似文献   

6.
The acid ionization constants of some pyrimidine bases of nucleic acids were determined pH-metrically at 25 degrees C and at the constant ionic strength I = 0.10 mol l(-1) (KNO3) in pure water as well as in aqueous media containing variable mole percentages (5-30%) of organic solvents. The organic solvents used were methanol, ethanol, N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), acetonitrile, acetone and dioxane. The results obtained indicated that the acidity constants are generally decreased as the content of an organic solvent in the medium is increased. It was deduced that the hydrogen bonding interactions and the solvent basicity in addition to the electrostatic effect are the major effects influencing significantly the acid ionization process of pyrimidine bases in the different water-organic solvent media. Some thermodynamic parameters (deltaH, deltaG degrees, deltaS degrees) of the ionization process over the temperature range 5-45 degrees C in pure water were also determined and discussed.  相似文献   

7.
We report here on the systematic investigation of photoinduced intramolecular electron transfer (IET) in a series of donor-bridge-acceptor molecules as a means of understanding electron transport through the bridge. Perylenebisimide chromophores connected by various oligophenylene bridges are studied because their electron-transfer behavior can readily be monitored by following changes in the fluorescence intensity. We find dramatic switching of the IET behavior as the solvent polarity (dielectric constant) is increased. By combining steady-state and time-resolved fluorescence spectroscopy in a variety of solvents at multiple temperatures with standard theories of electron transfer, we determine parameters governing the IET behavior of these dimers, such as the electronic coupling through the bridges. We also deploy available ab initio quantum chemical methods to calculate the through-space component of the electronic coupling matrix element. Single-molecule investigations of the electron-transfer behavior also show that IET can be switched reversibly by a similar mechanism in an isolated individual molecule.  相似文献   

8.
电子转移光氧化反应与光敏化的单重态氧反应是光氧化反应的两个最重要的组成部分。电子转移光氧化是随着光诱导电子转移反应研究的广泛开展而得以迅速发展的。近年来,与光诱导电子转移反应有密切关联的过渡金属配合物的可见光催化反应也已成为研究热点。一些过渡金属配合物催化的电子转移光氧化反应也已出现。本文根据电子转移光氧化反应的不同机理,对这些反应进行分类,介绍了不同类型的电子转移敏化剂(包括氰基芳烃类光敏剂、鎓盐类阳离子光敏剂、过渡金属配合物类光敏剂以及有机染料类光敏剂)引发的电子转移光氧化反应,并讨论了各类电子转移光氧化反应中底物的各种活性中间体、反应中氧的活性形式、可能的反应途径以及在有机合成中的应用。  相似文献   

9.
Pyrimidine dimer splitting in covalently linked dimer-arylamine systems.   总被引:1,自引:0,他引:1  
Cyclobutadipyrimidines (pyrimidine dimers) undergo photosplitting which is sensitized by electron donors. We prepared a series of compounds in which a dimer is directly linked to an arylamine, which acts as sensitizer for dimer splitting. Two diastereomers of the dimer-arylamine exhibited very different splitting efficiencies. Also studied were N-methyl, ring methoxy, as well as deuterated derivatives of the sensitizer. These dimer-arylamines had an absorption band with lambda max approximately 300 nm. In each case intramolecular photosensitization of dimer splitting was highly dependent on the solvent, ranging in one instance from phi spl = 0.02 in water to a high value of 0.31 in the least polar solvent mixture examined (1,4-dioxane: isopentane, 1:99). A mechanism is proposed which involves photoinduced electron transfer from arylamine to dimer and splitting of the dimer radical anion. The dependence of splitting on the solvent was rationalized on the basis of retardation of back electron transfer due to Marcus inverted behavior of the charge-separated species. Photolyases might achieve their high efficiency of dimer splitting in part by employing a hydrophobic active site to slow back electron transfer in a similar manner.  相似文献   

10.
Ultraviolet radiation causes two of the most abundant mutagenic and cytotoxic DNA lesions: cyclobutane pyrimidine dimers and 6‐4 photoproducts. (6‐4) Photolyases are light‐activated enzymes that selectively bind to DNA and trigger repair of mutagenic 6‐4 photoproducts via photoinduced electron transfer from flavin adenine dinucleotide anion (FADH?) to the lesion triggering repair. This review provides an overview of the sequential steps of the repair process, that is light absorption and resonance energy transfer, photoinduced electron transfer and electron‐induced splitting mechanisms, with an emphasis on the role of theory and computation. In addition, theoretical calculations and physical properties that can be used to classify specific mechanism are discussed in an effort to trace the fundamental aspects of each individual step and assist the interpretation of experimental data. The current challenges and suggested future directions are outlined for each step, concluding with a view on the future.  相似文献   

11.
Fullerenes have been used successfully in the covalent assembly of supramolecular systems that mimic some of the electron transfer steps of photosynthetic reaction centers. In these constructs C60 is most often used as the primary electron acceptor; it is linked to cyclic tetrapyrroles or other chromophores which act as primary electron donors in photoinduced electron transfer processes. In artificial photosynthetic systems, fullerenes exhibit several differences from the superficially more biomimetic quinone electron acceptors. The lifetime of the initial charge-separated state in fullerene-based molecules is, in general, considerably longer than in comparable systems containing quinones. Moreover, photoinduced electron transfer processes take place in non-polar solvents and at low temperature in frozen glasses in a number of fullerene-based dyads and triads. These features are unusual in photosynthetic model systems that employ electron acceptors such as quinones, and are more reminiscent of electron transfer in natural reaction centers. This behavior can be attributed to a reduced sensitivity of the fullerene radical anion to solvent charge stabilization effects and small internal and solvent reorganization energies for electron transfer in the fullerene systems, relative to quinone-based systems.  相似文献   

12.
Two new fluorescent sensors for Zn(2+) that utilize fluorescein as a reporting group, Zinpyr-1 and Zinpyr-2, have been synthesized and characterized. Zinpyr-1 is prepared in one step via a Mannich reaction, and Zinpyr-2 is obtained in a multistep synthesis that utilizes 4',5'-fluorescein dicarboxaldehyde as a key intermediate. Both Zinpyr sensors have excitation and emission wavelengths in the visible range ( approximately 500 nm), dissociation constants (K(d1)) for Zn(2+) of <1 nM, quantum yields approaching unity (Phi = approximately 0.9), and cell permeability, making them well-suited for intracellular applications. A 3- to 5-fold fluorescent enhancement is observed under simulated physiological conditions corresponding to the binding of the Zn(2+) cation to the sensor, which inhibits a photoinduced electron transfer (PET) quenching pathway. The X-ray crystal structure of a 2:1 Zn(2+):Zinpyr-1 complex has also been solved, and is the first structurally characterized example of a complex of fluorescein substituted with metal binding ligands.  相似文献   

13.
用Vnion Giken Model RA-401 Stopped-flow spectrophotometer 测定了在H_2O-MeOH,H_2O-EtOH,H_2O-PrOH,H_2O-DMSO,H_2O-DMF,H_2O-HMPA,H_2O-THF和H_2O-Dioxane等混合溶剂中,trans-[CoCl_2(NH_3)_4]~+与Fe(Ⅱ)间电子转移反应的速度常数。实验结果表明,表观二级进度常数K_(app)与[H~+]无关;混合溶剂的性质明显的影响K_(app);在所有实验中K_(app)(图4—7)先随x_(03)增大而增大,然后,随x_(03)继续增大而又下降;在x_(03)较小时,InK_(app)随溶剂介电常数的倒数D~(-1)增大而增大。上述事实说明反应的第三步是速控步骤。  相似文献   

14.
Reduced anionic flavin adenine dinucleotide (FADH?) is the critical cofactor in DNA photolyase (PL) for the repair of cyclobutane pyrimidine dimers (CPD) in UV‐damaged DNA. The initial step involves photoinduced electron transfer from *FADH? to the CPD. The adenine (Ade) moiety is nearly stacked with the flavin ring, an unusual conformation compared to other FAD‐dependent proteins. The role of this proximity has not been unequivocally elucidated. Some studies suggest that Ade is a radical intermediate, but others conclude that Ade modulates the electron transfer rate constant (kET) through superexchange. No study has succeeded in removing or modifying this Ade to test these hypotheses. Here, FAD analogs containing either an ethano‐ or etheno‐bridged Ade between the AN1 and AN6 atoms (e‐FAD and ε‐FAD, respectively) were used to reconstitute apo‐PL, giving e‐PL and ε‐PL respectively. The reconstitution yield of e‐PL was very poor, suggesting that the hydrophobicity of the ethano group prevented its uptake, while ε‐PL showed 50% reconstitution yield. The substrate binding constants for ε‐PL and rPL were identical. ε‐PL showed a 15% higher steady‐state repair yield compared to FAD‐reconstituted photolyase (rPL). The acceleration of repair in ε‐PL is discussed in terms of an ε‐Ade radical intermediate vs superexchange mechanism.  相似文献   

15.
Noninvasive reconstitution of the heme in cytochrome c(6) with zinc(II) ions allowed us to study the photoinduced electron-transfer reaction (3)Zncyt c(6) + cyt f(III) --> Zncyt c(6)(+) + cyt f(II) between physiological partners cytochrome c(6) and cytochrome f, both from Chlamydomonas reinhardtii. The reaction kinetics was analyzed in terms of protein docking and electron transfer. In contrast to various protein pairs studied before, both the unimolecular and the bimolecular reactions of this oxidative quenching take place at all ionic strengths from 2.5 through 700 mM. The respective intracomplex rate constants are k(uni) (1.2 +/- 0.1) x 10(4) s(-1) for persistent and k(bi) (9 +/- 4) x 10(2) s(-1) for the transient protein complex. The former reaction seems to be true electron transfer, and the latter seems to be electron transfer gated by a structural rearrangement. Remarkably, these reactions occur simultaneously, and both rate constants are invariant with ionic strength. The association constant K(a) for zinc cytochrome c(6) and cytochrome f(III) remains (5 +/- 3) x 10(5) M(-1) in the ionic strength range from 700 to 10 mM and then rises slightly to (7 +/- 2) x 10(6) M(-1), as ionic strength is lowered to 2.5 mM. Evidently, docking of these proteins from C. reinhardtii is due to hydrophobic interaction, slightly augmented by weak electrostatic attraction. Kinetics, chromatography, and cross-linking consistently show that cytochrome f self-dimerizes at ionic strengths of 200 mM and higher. Cytochrome f(III) quenches triplet state (3)Zncyt c(6), but its dimer does not. Formation of this unreactive dimer is an important step in the mechanism of electron transfer. Not only association between the reacting proteins, but also their self-association, should be considered when analyzing reaction mechanisms.  相似文献   

16.
The paper describes recent advances towards the construction of functional mimics of the oxygen evolving complex in photosystem II (PSII) that are coupled to photoinduced charge separation. Some key principles of PSII and artificial systems for light-induced charge accumulation are discussed. Systems are described where biomimetic electron donors--manganese complexes and tyrosine--have been linked to a Ru(II)-polypyridine photosensitiser. Oxidation of the donors by intramolecular electron transfer from the photo-oxidised Ru(III) complex has been studied using optical flash photolysis and EPR experiments. A step-wise electron transfer Mn(III,III)-->tyrosine Ru(III) has been demonstrated, in analogy to the reaction on the donor side of PSII. Electron transfer from the tyrosine to Ru(III) was coupled to tyrosine deprotonation. This resulted in a large reorganisation energy and thus a slow reaction rate, unless the tyrosine was hydrogen bonded or already deprotonated. A comparison with analogous reactions in PSII is made. Finally, light-induced oxidation of a manganese dimer linked to a Ru(II)-photosensitiser has been observed. Preliminary results suggest the possibility of photo-oxidising manganese dimers in several steps, which is an important advancement towards water oxidation.  相似文献   

17.
Abstract— Indole derivatives including tryptophan can be used as photosensitizers of the splitting of pyrimidine dimers. The reaction can take place in frozen aqueous solutions as well as in fluid medium. Electron transfer from the indole ring to the dimer appears to be involved in the photosensitized reaction. Solvated electrons produced by flash photolysis in the presence of indoles or by pulse radiolysis are also able to split thymine dimers.
The splitting of pyrimidine dimers in DNA can be photosensitized by indole derivatives such as serotonin and by tryptophan-containing oligopeptides. Several methods including fluorescence and nuclear magnetic resonance have been used to show that the indole ring of these oligopeptides is able to stack with bases in nucleic acids. These stacked complexes are involved in the photosensitized reaction.
The splitting of pyrimidine dimers in DNA has also been photosensitized by the protein coded by gene 32 of phage T4 which binds strongly and cooperatively to single-stranded DNA. The mechanism of the splitting reaction as well as the possible use of this reaction to investigate the role of tryptophan residues in the binding of proteins to nucleic acids are discussed.  相似文献   

18.
Three rotaxanes, with axles with two zinc porphyrins (ZnPs) at both ends penetrating into a necklace pending a C60 moiety, were synthesized with varying interlocked structures and axle lengths. The intra-rotaxane photoinduced electron transfer processes between the spatially positioned C60 and ZnP in rotaxanes were investigated. Charge-separated (CS) states (ZnP*+, C60*-)rotaxane are formed via the excited singlet state of ZnP (1ZnP*) to the C60 moiety in solvents such as benzonitrile, THF, and toluene. The rate constants and quantum yields of charge separation via 1ZnP decrease with axle length, but they are insensitive to solvent polarity. When the axle becomes long, charge separation takes place via the excited triplet state of ZnP (3ZnP*). The lifetime of the CS state increases with axle length from 180 to 650 ns at room temperature. The small activation energies of charge recombination were evaluated by temperature dependence of electron-transfer rate constants, probably reflecting through-space electron transfer in the rotaxane structures.  相似文献   

19.
1-azacarbazole hydrogen-bonded dimers undergo photoinduced double proton transfer reaction in their lowest excited singlet state. A second emission band with a maximum at 510 nm arises from a tautomer formed in the excited singlet state as a result of the double proton transfer process.  相似文献   

20.
Various possible pathways for photochemical conversion of light energy, including light-induced electron transfer and hydride transfer, are described. Several problems diminishing the photoconversion efficiency as well as side reactions affecting the stability of these systems are discussed. Oxidation of photosensitizers by singlet oxygen as well as attack by OH radicals is supposed to be the main degradation pathway for dyes and for the photoinduced reactions. The stability of viologens (acting as electron transfer agents) is mainly affected by hydrogenation, for which a reaction mechanism is presented. The dependence of rate constants on the free enthalpy of reaction is discussed with respect to quantum yields for light energy conversion. Following this, quantum yields of cyclic water splitting based on diffusion-controlled reactions are very low. Selective catalysis or vectorial processes (with a spatial charge separation) could enhance the quantum yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号