首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We make the connection between the geometric model for capillarity with line tension and the Cahn‐Hilliard model of two‐phase fluids. To this aim we consider the energies where u is a scalar density function and W and V are double‐well potentials. We show that the behaviour of F ε in the limit ε→0 and λ→∞ depends on the limit of ε log λ. If this limit is finite and strictly positive, then the singular limit of the energies F ε leads to a coupled problem of bulk and surface phase transitions, and under certain assumptions agrees with the relaxation of the capillary energy with line tension. These results were announced in [ABS1] and [ABS2]. (Accepted November 5, 1997)  相似文献   

2.
IntroductionInthispaper,weconsidertheellipticsystem(1λ) -Δu=f(λ,x,u)-v  (inΩ),-Δv=δu-γv(inΩ),u=v=0(onΩ),whereΩisasmoothboundeddomaininRN(N≥2)andλisarealparameter.Thesolutions(u,v)ofthissystemrepresentsteadystatesolutionsofreactiondiffusionsystemsderivedfromseveralap…  相似文献   

3.
Direct Numerical Simulations (DNS) of Kolmogorov flows are performed at three different Reynolds numbers Re λ between 110 and 190 by imposing a mean velocity profile in y-direction of the form U(y) = F sin(y) in a periodic box of volume (2π)3. After a few integral times the turbulent flow turns out to be statistically steady. Profiles of mean quantities are then obtained by averaging over planes at constant y. Based on these profiles two different model equations for the mean dissipation ε in the context of two-equation RANS (Reynolds Averaged Navier–Stokes) modelling of turbulence are compared to each other. The high Reynolds number version of the k-ε-model (Jones and Launder, Int J Heat Mass Transfer 15:301–314, 1972), to be called the standard model and a new model by Menter et al. (2006), to be called the Menter–Egorov model, are tested against the DNS results. Both models are solved numerically and it is found that the standard model does not provide a steady solution for the present case, while the Menter–Egorov model does. In addition a fairly good quantitative agreement of the model solution and the DNS data is found for the averaged profiles of the kinetic energy k and the dissipation ε. Furthermore, an analysis based on flow-inherent geometries, called dissipation elements (Wang and Peters, J Fluid Mech 608:113–138, 2008), is used to examine the Menter–Egorov ε model equation. An expression for the evolution of ε is derived by taking appropriate moments of the equation for the evolution of the probability density function (pdf) of the length of dissipation elements. A term-by-term comparison with the model equation allows a prediction of the constants, which with increasing Reynolds number approach the empirical values.  相似文献   

4.
The paper deals with the asymptotic behaviour as ε → 0 of a two-dimensional conduction problem whose matrix-valued conductivity a ε is ε-periodic and not uniformly bounded with respect to ε. We prove that only under the assumptions of equi-coerciveness and L 1-boundedness of the sequence a ε , the limit problem is a conduction problem of same nature. This new result points out a fundamental difference between the two-dimensional conductivity and the three-dimensional one. Indeed, under the same assumptions of periodicity, equi-coerciveness and L 1-boundedness, it is known that the high-conductivity regions can induce nonlocal effects in three (or greater) dimensions.  相似文献   

5.
This paper presents a solution to the problem of stabilizing a given fractional dynamic system using fractional-order PIλ and PIλDμ controllers. It is based on plotting the global stability region in the (k p, k i)-plane for the PIλ controller and in the (k p , k i , k d)-space for the PIλDμ controller. Analytical expressions are derived for the purpose of describing the stability domain boundaries which are described by real root boundary, infinite root boundary and complex root boundary. Thus, the complete set of stabilizing parameters of the fractional-order controller is obtained. The algorithm has a simple and reliable result which is illustrated by several examples, and hence is practically useful in the analysis and design of fractional-order control systems.  相似文献   

6.
This paper uses a variational approach to establish existence of solutions (σ t , v t ) for the 1-d Euler–Poisson system by minimizing an action. We assume that the initial and terminal points σ 0, σ T are prescribed in , the set of Borel probability measures on the real line, of finite second-order moments. We show existence of a unique minimizer of the action when the time interval [0,T] satisfies T < π. These solutions conserve the Hamiltonian and they yield a path tσ t in . When σ t  = δ y(t) is a Dirac mass, the Euler–Poisson system reduces to . The kinetic version of the Euler–Poisson, that is the Vlasov–Poisson system was studied in Ambrosio and Gangbo (Comm Pure Appl Math, to appear) as a Hamiltonian system. WG gratefully acknowledges the support provided by NSF grants DMS-02-00267, DMS-03-54729 and DMS-06-00791. TN gratefully acknowledges the postdoctoral support provided by NSF grants DMS-03- 54729 and the School of Mathematics. AT gratefully acknowledges the support provided by the School of Mathematics.  相似文献   

7.
We consider a time-dependent free boundary problem with radially symmetric initial data: σt − Δσ + σ = 0 if and σ(r,0)=σ0(r) in {r < R(0)} where R(0) is given. This is a model for tumor growth, with nutrient concentration (or tumor cells density) σ(r,t) and proliferation rate then there exists a unique stationary solution (σS(r), RS), where RS depends only on the number . We prove that there exists a number μ*, such that if μ < μ* . . . then the stationary solution is stable with respect to non-radially symmetric perturbations, whereas if μ > μ* then the stationary solution is unstable.  相似文献   

8.
This paper concerns the existence of a steadily translating finger solution in a Hele-Shaw cell for small but non-zero surface tension (ɛ2). Though there are numerous numerical and formal asymptotic results for this problem, we know of no mathematically rigorous results that address the selection problem. We rigorously conclude that for relative finger width λ in the range , with small, analytic symmetric finger solutions exist in the asymptotic limit of surface tension if and only if the Stokes constant for a relatively simple nonlinear differential equation is zero. This Stokes constant S depends on the parameter and earlier calculations by a number of authors have shown it to be zero for a discrete set of values of a. The methodology consists of proving the existence and uniqueness of analytic solutions for a weak half-strip problem for any λ in a compact subset of (0, 1). The weak problem is shown to be equivalent to the original finger problem in the function space considered, provided we invoke a symmetry condition. Next, we consider the behavior of the solution in a neighborhood of an appropriate complex turning point for the restricted case , for some . This turning point accounts for exponentially small terms in ɛ, as ɛ→0+ that generally violate the symmetry condition. We prove that the symmetry condition is satisfied for small ɛ when the parameter a is constrained appropriately. (Accepted July 4, 2002 Published online January 15, 2003) Communicated by F. OTTO  相似文献   

9.
We consider a non-convex variational problem (P) and the corresponding singular perturbed problem (P ε ). The qualitative behavior of stable critical points of (P ε ) depending on ε and a lower order term is discussed and we prove compactness of a sequence of stable critical points as ε ↘ 0. Moreover we show whether this limit is the global minimizer of (P). Furthermore uniform convergence is considered as well as the convergence rate depending on ε.   相似文献   

10.
A fully developed laminar Poiseuille flow subject to constant heat flux across the wall is analysed with respect to its stability behavior by applying a weakly nonlinear stability theory. It is based on an expansion of the disturbance control equations with respect to a perturbation parameter ε. This parameter is the small initial amplitude of the fundamental wave. This fundamental wave which is the solution of the linear (Orr-Sommerfeld) first order equation triggers all higher order effects with respect to ε. Heat transfer is accounted for asymptotically through an expansion with respect to a small heat transfer parameter ε T . Both perturbation parameters, ε and ε T , are linked by the assumption ε T =O2) by which a certain distinguished limit is assumed. The results for a fluid with temperature dependent viscosity show that heat transfer effects in the nonlinear range continue to act in the same way as in the initial linear range. Received on 11 August 1997  相似文献   

11.
The steady mixed convection boundary-layer flow over a vertical impermeable surface in a porous medium saturated with water close to its maximum density is considered for uniform wall temperature and outer flow. The problem can be reduced to similarity form and the resulting equations are examined in terms of a mixed convection parameter λ and a parameter δ which measures the difference between the ambient temperature and the temperature at the maximum density. Both assisting (λ > 0) and opposing flows (λ < 0) are considered. A value δ0 is found for which there are dual solutions for a range λc < λ < 0 of λ (the value of λc dependent on δ) and single solutions for all λ ≥ 0. Another value of δ1 of δ, with δ1 > δ0, is found for which there are dual solutions for a range 0 < λ < λc of positive values of λ, with solutions for all λ≤ 0. There is also a range δ0 <  δ < δ1 where there are solutions only for a finite range of λ, with critical points at both positive and negative values of λ, thus putting a finite limit on the range of existence of solutions.  相似文献   

12.
The development of the thermo-viscous fingering instability of miscible displacements in homogeneous porous media is examined. In this first part of the study dealing with stability analysis, the basic equations and the parameters governing the problem in a rectilinear geometry are developed. An exponential dependence of viscosity on temperature and concentration is represented by two parameters, thermal mobility ratio β T and a solutal mobility ratio β C , respectively. Other parameters involved are the Lewis number Le and a thermal-lag coefficient λ. The governing equations are linearized and solved to obtain instability characteristics using either a quasi-steady-state approximation (QSSA) or initial value calculations (IVC). Exact analytical solutions are also obtained for very weakly diffusing systems. Using the QSSA approach, it was found that an increase in thermal mobility ratio β T is seen to enhance the instability for fixed β C , Le and λ. For fixed β C and β T , a decrease in the thermal-lag coefficient and/or an increase in the Lewis number always decrease the instability. Moreover, strong thermal diffusion at large Le as well as enhanced redistribution of heat between the solid and fluid phases at small λ is seen to alleviate the destabilizing effects of positive β T . Consequently, the instability gets strictly dominated by the solutal front. The linear stability analysis using IVC approach leads to conclusions similar to the QSSA approach except for the case of large Le and unity λ flow where the instability is seen to get even less pronounced than in the case of a reference isothermal flow of the same β C , but β T  = 0. At practically, small value of λ, however, the instability ultimately approaches that due to β C only.  相似文献   

13.
A linear stability analysis is used to study the conditions marking the onset of secondary flow in the form of longitudinal vortices for plane Poiseuille flow of water in the thermal entrance region of a horizontal parallel-plate channel by a numerical method. The water temperature range under consideration is 0∼30°C and the maximum density effect at 4°C is of primary interest. The basic flow solution for temperature includes axial heat conduction effect and the entrance temperature is taken to be uniform at far upstream location jackie=−∞ to allow for the upstream heat penetration through thermal entrance jackie=0. Numerical results for critical Rayleigh number are obtained for Peclet numbers 1, 10, 50 and thermal condition parameters (λ 1, λ 2) in the range of −2.0≤λ 1≤−0.5 and −1.0≤λ 2≤1.4. The analysis is motivated by a desire to determine the free convection effect on freezing or thawing in channel flow of water.  相似文献   

14.
The theory describing the onset of convection in a homogeneous porous layer bounded above and below by isothermal surfaces is extended to consider an upper boundary which is partly permeable. The general boundary condition p + λ ∂p/∂n = constant is applied at the top surface and the flow is investigated for various λ in the range 0 ⩽ λ < ∞. Estimates of the magnitude and horizontal distribution of the vertical mass and heat fluxes at the surface, the horizontally-averaged heat flux (Nusselt number) and the fraction of the fluid which recirculates within the layer are found for slightly supercritical conditions. Comparisons are made with the two limiting cases λ → ∞, where the surface is completely impermeable, and λ = 0, where the surface is at constant pressure. Also studied are the effects of anisotropy in permeability, ξ = K H /K V , and anisotropy is thermal conductivity, η = k H /k V , both parameters being ratios of horizontal to vertical quantities. Quantitative results are given for a wide variety of the parameters λ, ξ and η. In the limit ξ/η → 0 there is no recirculation, all fluid being converted out of the top surface, while in the limit ξ/η → ∞ there is full recirculation.  相似文献   

15.
针对悬索的振动,研究了模态耦合效应对悬索振动特征的影响。首先基于哈密顿原理推导了考虑抗弯刚度影响的悬索的偏微分振动方程,采用Galerkin方法得到了悬索的前三阶模态耦合振动常微分方程组。采用多尺度法分析了悬索的一阶、二阶和三阶主共振,得到了一阶、二阶和三阶主共振的幅-频响应方程,接着基于Lyapunov稳定性理论进行了稳定性分析,最后进行了数值算例分析。算例分析表明,当1:1主共振发生时,一阶主共振产生的幅值远大于二阶和三阶主共振产生的幅值,即当悬索振动时,能量主要以一阶模态幅值的形式散发;在同阶次幅值-σ曲线中,随着F的增加,1:1主共振产生的幅值有所增加;在幅值-V曲线中,随着σ的增加,临界跳跃点有向右偏移的趋势,σ增加会导致幅值增加;档距越大,一阶、二阶和三阶1:1主共振产生的幅值越大,但一阶主共振产生的幅值增加最为明显。  相似文献   

16.
We solve the initial-boundary-value linear stability problem for small localised disturbances in a homogeneous elastic waveguide formally by applying a combined Laplace – Fourier transform. An asymptotic evaluation of the solution, expressed as an inverse Laplace – Fourier integral, is carried out by means of the mathematical formalism of absolute and convective instabilities. Wave packets, triggered by perturbations localised in space and finite in time, as well as responses to sources localised in space, with the time dependence satisfying eiωt + O(e−ɛt ), for t → ∞, where Im ω0 = 0 and ω > 0 , that is, the signaling problem, are treated. For this purpose, we analyse the dispersion relation of the problem analytically, and by solving numerically the eigenvalue stability problem. It is shown that due to double roots in a wavenumber k of the dispersion relation function D(k, ω), for real frequencies ω, that satisfy a collision criterion, wave packets with an algebraic temporal decay and signaling with an algebraic temporal growth, that is, temporal resonances, are present in a neutrally stable homogeneous waveguide. Moreover, for any admissible combination of the physical parameters, a homogeneous waveguide possesses a countable set of temporally resonant frequencies. Consequences of these results for modelling in seismology are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
We are concerned with the existence of a weak solution to the degenerate quasi-linear Dirichlet boundary value problem
It is assumed that 1  <  p  <  ∞, p  ≠  2, Ω is a bounded domain in is a given function, and λ stands for the (real) spectral parameter near the first (smallest) eigenvalue λ1 of the positive p-Laplacian  − Δ p , where . Eigenvalue λ1 being simple, let φ1 denote the eigenfunction associated with it. We show the existence of a solution for problem (P) when f “nearly” satisfies the orthogonality condition ∫Ω f φ1  dx  =  0 and λ  ≤  λ1  +  δ (with δ >  0 small enough). Moreover, we obtain at least three distinct solutions if either p < 2 and λ1  −  δ ≤  λ  <  λ1, or else p > 2 and λ1  <  λ  ≤  λ1  +  δ. The proofs use a minimax principle for the corresponding energy functional performed in the orthogonal decomposition induced by the inner product in L 2(Ω). First, the global minimum is taken over , and then either a local minimum or a local maximum over lin {φ1}. If the latter is a local minimum, the local minimizer in thus obtained provides a solution to problem (P). On the other hand, if it is a local maximum, one gets only a pair of sub- and supersolutions to problem (P), which is then used to obtain a solution by a topological degree argument.  相似文献   

18.
We state a particular case of one of the theorems which we shall prove. Let Ω be a bounded open set in n with smooth boundary and let σ=(σ ij )be a symmetric second-order tensor with components σ ij εH k(Ω) for some (positive or negative) integer k; H k are Sobolev spaces on Ω. Then we have for some u i εH k +1(Ω),i=1,...,n, if and only if (if k<0, the integral is in fact a duality) for any symmetric tensor (ω with components and such that ). Some applications in the theory of elasticity are also given.  相似文献   

19.
Static solutions of the SO(3)-symmetric Vlasov-Einstein system are studied via a variational approach. For the constitutive relation of the Emden-Fowler type φ(E,F)≡E σ+ 1 F k we prove the existence of such solutions of sufficiently small mass-energy, provided 0<σ < k+3/2. These solutions are local minimizers of the energy-Casimir functional, subjected to a variational barrier. Accepted July 16, 2000?Published online January 22, 2001  相似文献   

20.
Simulations of monodisperse and polydisperse (μ 2(A) = 0.13±0.002) 2D foam samples undergoing simple shear are performed using the 2D viscous froth (VF) model. These simulations clearly demonstrate shear localisation. The dependence of localisation length on the product λV (shearing velocity V times the wall drag coefficient λ) is examined and is shown to agree qualitatively with published experimental data. A wide range of localisation lengths is found at low λV, an effect which is attributed to the existence of distinct yield and limit stresses. The general continuum model is extended to incorporate such an effect and its parameters are subsequently related to those of the VF model. A Herschel–Bulkley exponent of a = 0.3 is shown to accurately describe the observed behaviour. The localisation length is found to be independent of λV for monodisperse foam samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号