首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we propose a new SVEIR epidemic disease model with time delay, and analyze the dynamic behavior of the model under pulse vaccination. Pulse vaccination is an effective strategy for the elimination of infectious disease. Using the discrete dynamical system determined by the stroboscopic map, we obtain an ‘infection-free’ periodic solution. We also show that the ‘infection-free’ periodic solution is globally attractive when some parameters of the model under appropriate conditions. The permanence of the model is investigated analytically. Our results indicate that a large vaccination rate or a short pulse of vaccination or a long latent period is a sufficient condition for the extinction of the disease.  相似文献   

2.
This study explores the influence of epidemics by numerical simulations and analytical techniques. Pulse vaccination is an effective strategy for the treatment of epidemics. Usually, an infectious disease is discovered after the latent period, H1N1 for instance. The vaccinees (susceptible individuals who have started the vaccination process) are different from both susceptible and recovered individuals. So we put forward a SVEIRS epidemic model with two time delays and nonlinear incidence rate, and analyze the dynamical behavior of the model under pulse vaccination. The global attractivity of ‘infection-free’ periodic solution and the existence, uniqueness, permanence of the endemic periodic solution are investigated. We obtain sufficient condition for the permanence of the epidemic model with pulse vaccination. The main feature of this study is to introduce two discrete time delays and impulse into SVEIRS epidemic model and to give pulse vaccination strategies.  相似文献   

3.
A new epidemic model of seasonal/cyclical pulse contagions of an infectious disease is introduced: a population with a controlled infectious disease is perturbed by a sequence of pulse infectious events arising from the specific features of the population’s behavior. The purpose of this article is to obtain an epidemic threshold which allows us to decide how a sequence of epidemic events could destabilize the previous controlled scenario and how a new endemic equilibrium appears. A threshold is obtained when supposing a set of almost periodic properties in the model.  相似文献   

4.
In this paper, two susceptible‐infected‐susceptible epidemic models with varying total population size, continuous vaccination, and state‐dependent pulse vaccination are formulated to describe the transmission of infectious diseases, such as diphtheria, measles, rubella, pertussis, and so on. The first model incorporates the proportion of infected individuals in population as monitoring threshold value; we analytically show the existence and orbital asymptotical stability of positive order‐1 periodic solution for this control model. The other model determines control strategy by monitoring the proportion of susceptible individuals in population; we also investigate the existence and global orbital asymptotical stability of the disease‐free periodic solution. Theoretical results imply that the disease dies out in the second case. Finally, using realistic parameter values, we carry out some numerical simulations to illustrate the main theoretical results and the feasibility of state‐dependent pulse control strategy.  相似文献   

5.
Two new models for controlling diseases, incorporating the best features of different control measures, are proposed and analyzed. These models would draw from poultry, livestock and government expertise to quickly, cooperatively and cost-effectively stop disease outbreaks. The combination strategy of pulse vaccination and treatment (or isolation) is implemented in both models if the number of infectives reaches the risk level (RL). Firstly, for one time impulsive effect we compare three different control strategies for both models in terms of cost. The theoretical and numerical results show that there is an optimal vaccination and treatment proportion such that integrated pulse vaccination and treatment (or isolation) reaches its minimum in terms of cost. Moreover, this minimum cost of integrated strategy is less than any cost of single pulse vaccination or single treatment. Secondly, a more realistic case for the second model is investigated based on periodic impulsive control strategies. The existence and stability of periodic solution with the maximum value of the infectives no larger than RL is obtained. Further, the period T of the periodic solution is calculated, which can be used to estimate how long the infectious population will take to return back to its pre-control level (RL) once integrated control tactics cease. This implies that we can control the disease if we implement the integrated disease control tactics every period T. For periodic control strategy, if we aim to control the disease such that the maximum number of infectives is relatively small, our results show that the periodic pulse vaccination is optimal in terms of cost.  相似文献   

6.
In this paper, we investigate two delayed SIR models with vaccination and a generalized nonlinear incidence and obtain sufficient conditions for eradication and permanence of the disease, respectively. Our results indicate that a larger vaccination rate will lead to the eradication of a disease. Furthermore, theoretical results show that constant vaccination strategy can lead to disease eradication at relatively low values of vaccination than pulse vaccination strategy, which is different from the results in [1]. In addition, numerical simulations indicate that pulse vaccination strategy or a longer infectious period will make a larger fraction of population infected by disease.  相似文献   

7.
A new two-group deterministic model for Chlamydia trachomatis is designed and analyzed to gain insights into its transmission dynamics. The model is shown to exhibit the phenomenon of backward bifurcation, where a stable disease-free equilibrium (DFE) co-exists with one or more stable endemic equilibria when the associated reproduction number is less than unity. It is further shown that the backward bifurcation dynamic is caused by the re-infection of individuals who recovered from the disease. The epidemiological implication of this result is that the classical requirement of the reproduction number being less than unity becomes only a necessary, but not sufficient, condition for disease elimination. The basic model is extended to incorporate the use of treatment for infectious individuals (including those who show disease symptoms and those who do not). Rigorous analysis of the treatment model reveals that the use of treatment could have positive or negative population-level impact, depending on the sign of a certain epidemiological threshold. The treatment model is used to evaluate various treatment strategies, namely treating every infected individual showing symptoms of Chlamydia (universal strategy), treating only infectious males showing Chlamydia symptoms (male-only strategy) and treating only infectious females showing symptoms of Chlamydia (female-only strategy). Numerical simulations show that the implementation of the male-only or female-only strategy can induce an indirect benefit of saving new cases of Chlamydia infection in the opposite sex. Further, the universal strategy gives the highest reduction in the cumulative number of new cases of infection.  相似文献   

8.
Control schemes for infectious disease models with time-varying contact rate are analyzed. First, time-constant control schemes are introduced and studied. Specifically, a constant treatment scheme for the infected is applied to a SIR model with time-varying contact rate, which is modelled by a switching parameter. Two variations of this model are considered: one with waning immunity and one with progressive immunity. Easily verifiable conditions on the basic reproduction number of the infectious disease are established which ensure disease eradication under these constant control strategies. Pulse control schemes for epidemic models with time-varying contact rates are also studied in detail. Both pulse vaccination and pulse treatment models are applied to a SIR model with time-varying contact rate. Further, a vaccine failure model as well as a model with a reduced infective class are considered with pulse control schemes. Again, easily verifiable conditions on the basic reproduction number are developed which guarantee disease eradication. Some simulations are given to illustrate the threshold theorems developed.  相似文献   

9.
Pulse vaccination is an effective strategy for the elimination of infectious diseases. In this paper, we considered an SEIR epidemic model with delay and impulsive vaccination direct at a variable population and analyzed its dynamic behaviors. Using the discrete dynamical system determined by the stroboscopic map, we obtain the exact infection‐free periodic solution of the impulsive epidemic system, further, prove that the infection‐free periodic solution is globally attractive if the vaccination rate is larger than θ* or the length of latent period of disease is larger than τ* or the length of period of impulsive vaccination is smaller than T*. We also prove that a short latent period of the disease (with τ) or a long period of pulsing (with T) or a small pulse vaccination rate (with θ) is sufficient to bring about the disease is uniformly persistent. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
建立了具有脉冲接种和总人口变化的时滞SEIR模型.证明了当R*<1时染病者消亡即疾病最终消失,当R_*>1时将发展为地方病.  相似文献   

11.
Regular roguing is an effective method to control plant virus diseases. In this paper, a compartmental mathematical model is established to represent the dynamics of plant disease in a periodic environment, including impulsive roguing control strategy. The basic reproductive number and its relation to the persistence of the disease is discussed via using next infection operation. Numerical simulations are performed to demonstrate the theoretical findings, and to illustrate the effect of control measures. Our results show that, (i) when the infection rate is high, it may be impossible to eradicate the disease by simply roguing the infectious plant, so how to effectively identify the latent plant is a key issue in disease control, (ii) increasing the replanting rate is bad for disease control, (iii) the published autonomous research model with continuous roguing may overestimate the infectious risk inherent to impulsive control.  相似文献   

12.
Achievement of the herd immunity is essential for preventing the periodic spreading of an infectious disease such as the flu. If vaccination is voluntary, as vaccination coverage approaches the critical level required for herd immunity, there is less incentive for individuals to be vaccinated; this results in an increase in the number of so-called “free-riders” who craftily avoid infection via the herd immunity and avoid paying any cost. We use a framework originating in evolutionary game theory to investigate this type of social dilemma with respect to epidemiology and the decision of whether to be vaccinated. For each individual in a population, the decision on vaccination is associated with how one assesses the risk of infection. In this study, we propose a new risk-assessment model in a vaccination game when an individual updates her strategy, she compares her own payoff to a net payoff obtained by averaging a collective payoff over individuals who adopt the same strategy as that of a randomly selected neighbor. In previous studies of vaccination games, when an individual updates her strategy, she typically compares her payoff to the payoff of a randomly selected neighbor, indicating that the risk for changing her strategy is largely based on the behavior of one other individual, i.e., this is an individual-based risk assessment. However, in our proposed model, risk assessment by any individual is based on the collective success of a strategy and not on the behavior of any one other individual. For strategy adaptation, each individual always takes a survey of the degree of success of a certain strategy that one of her neighbors has adopted, i.e., this is a strategy-based risk assessment. Using computer simulations, we determine how these two different risk-assessment methods affect the spread of an infectious disease over a social network. The proposed model is found to benefit the population, depending on the structure of the social network and cost of vaccination. Our results suggest that individuals (or governments) should understand the structure of their social networks at the regional level, and accordingly, they should adopt an appropriate risk-assessment methodology as per the demands of the situation.  相似文献   

13.
This paper presents a simple continuous-time linear vaccination-based control strategy for a SEIR (susceptible plus infected plus infectious plus removed populations) disease propagation model. The model takes into account the total population amounts as a refrain for the illness transmission since its increase makes more difficult contacts among susceptible and infected. The control objective is the asymptotically tracking of the removed-by-immunity population to the total population while achieving simultaneously the remaining population (i.e. susceptible plus infected plus infectious) to asymptotically tend to zero.  相似文献   

14.
研究了一类具有脉冲预防接种的SEIRS传染病模型,利用对模型等价系统的分析,得到了模型无病周期解具有全局吸引性的存在条件,并且给出了疾病的持久性的存在条件.  相似文献   

15.
We employ a birth and death process to describe the spread of an infectious disease through a closed population. Control of the epidemic can be effected at any instant by varying the birth and death rates to represent quarantine and medical care programs. An optimal strategy is one which minimizes the expected discounted losses and costs resulting from the epidemic process and the control programs over an infinite horizon. We formulate the problem as a continuous-time Markov decision model. Then we present conditions ensuring that optimal quarantine and medical care program levels are nonincreasing functions of the number of infectives in the population. We also analyze the dependence of the optimal strategy on the model parameters. Finally, we present an application of the model to the control of a rumor.  相似文献   

16.
We construct a discrete-time mathematical model for so-called periodic diseases. Most of these diseases occur during the early years of life and appear in cycles that are approximately periodic. Our three variable model effectively reduces to two variables. We study the nature of its fixed-point and its linear stability properties, and obtain an estimation of small oscillations about the fixed-point. This model, unlike many continuous-time ODE models, has an increasing total population. The major goal of this work is to examine the response of the model to a pulse vaccination strategy. We show that under the proper conditions the disease can be eliminated from the total population.  相似文献   

17.
In this paper, we investigate the dynamics of a SIRVS epidemic model with pulse vaccination strategy and saturation incidence. We show that the disease is eradicated when the basic reproduction number is less than unity, and the disease is permanent when the basic reproduction number is greater than unity. Finally, by means of numerical simulation, we obtain the parameters reach some critical value, and the disease will go to extinction.  相似文献   

18.
In this study, we formulate and analyze a new SVEIR epidemic disease model with time delay and saturation incidence, and analyze the dynamic behavior of the model under pulse vaccination. Using the discrete dynamical system determined by the stroboscopic map, we obtain an ‘infection-free’ periodic solution, further, show that the ‘infection-free’ periodic solution is globally attractive for some parameters of the model under appropriate conditions. The permanence of the model is investigated analytically. By computer simulation it is concluded that a large vaccination rate or a short pulse of vaccination or a long latent period are each a sufficient condition for the extinction of the disease.  相似文献   

19.
In this paper, an impulsive vaccinated strategy to eradicate SIVS epidemic model is studied. Since infection age is an important factor of epidemic progression, we incorporate the infection age into the model. In this model, we analyze the dynamic behaviors of this model and obtain that there exists an infection-free periodic solution which is globally asymptotically stable under a sufficient condition. Our results indicate that a short period of pulse or a large pulse vaccination rate is the sufficient con...  相似文献   

20.
Disease control by managers is a crucial response to emerging epidemics, and in the context of global change, emerging risks associated with parasites, invasive species, and infectious diseases are an important issue especially for developing countries. Our objective is to provide a mathematical framework to study the response of a predator–prey model to a disease in both populations and harvesting of prey species. We have worked out the conditions for local stability of the equilibrium points as well as persistence of the system. We have derived the ecological and disease basic reproduction numbers. These enable us to determine the community structure of the system. Harvesting may play a crucial role in a host–parasite system, and reasonable harvesting can remove parasite burden from the host. Our numerical results reveal that the reasonable harvesting prevents the oscillations of the species. We conclude that harvesting can be an effective strategy for controlling the spread of disease. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号