首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydromagnetic flow between two horizontal plates in a rotating system, where the lower is a stretching sheet and the upper is a porous solid plate (in the presence of a magnetic field), is analyzed. The equations of conservation of mass and momentum are reduced to a system of coupled non-linear ordinary differential equations. These basic non-linear differential equations, for the velocity field (f′,f,g), are solved numerically by using a fourth-order Runge-Kutta integration scheme. The numerical results thus obtained are validated by the analytical results (for small R) obtained by the perturbation technique and presented through graphs. Also, the effects of the non-dimensional parameters R, λ, M2 and K2 on the velocity field are discussed, and it is shown that for large K2, the coriolis force and the magnetic field that act against the pressure gradient cause reverse flow.  相似文献   

2.
In this article, an investigation is conducted to analyze the marginal stability with and without magnetic field in a mushy layer. During alloy solidification, such mushy layer, which is adjacent to the solidification front and composed of solid dendrites and liquid, is known to produce vertical chimneys. Here, we carry out numerical investigation for particular range of parameter values, which cover those of available experimental studies, to determine the convective flow at the onset of motion. The governing coupled non-linear partial differential equations are non-dimensionalised and solved to get the steady basic-state solution. The thickness of the mushy layer is determined as a part of the solution. Using multiple shooting technique, we determine the steady-state solutions in a range of critical Rayleigh number. We analyse the effect of several parameters, Chandrasekhar number Q, and Robert’s number τ on the problem. It was found that an increase in Q has a stabilizing effect on solidification and the critical Rayleigh number increases on increasing Q. It was also found that for moderate or small values of Robert’s number τ the critical Rayleigh number is mostly insensitive.  相似文献   

3.
Rafael Cortell 《Meccanica》2012,47(3):769-781
An analysis is presented for the steady non-linear viscous flow of an incompressible viscous fluid over a horizontal surface of variable temperature with a power-law velocity under the influences of suction/blowing, viscous dissipation and thermal radiation. Numerical results are illustrated by means of tables and graphs. The governing partial differential equations are converted into nonlinear ordinary differential equations by a similarity transformation. The effects of the stretching parameter n, suction/blowing parameter b, Prandtl number σ, Eckert number Ec(Ec * )E_{c}(E_{c}^{ *} ) and radiation parameter N R are discussed. Two cases are studied, namely, (i) Prescribed surface temperature (PST case) and, (ii) Prescribed heat flux at the sheet (PHF case).  相似文献   

4.
In this communication a generalized threedimensional steady flow of a viscous fluid between two infinite parallel plates is considered. The flow is generated due to uniform stretching of the lower plate in x- and y-directions. It is assumed that the upper plate is uniformly porous and is subjected to constant injection. The governing system is fully coupled and nonlinear in nature. A complete analytic solution which is uniformly valid for all values of the dimensionless parameters β, Re and λ is obtained by using a purely analytic technique, namely the homotopy analysis method. Also the effects of the parameters β, Re and λ on the velocity field are discussed through graphs.  相似文献   

5.
 The purpose of this paper is twofold. First, we give a derivation of the Lagrangian averaged Euler (LAE-α) and Navier-Stokes (LANS-α) equations. This theory involves a spatial scale α and the equations are designed to accurately capture the dynamics of the Euler and Navier-Stokes equations at length scales larger than α, while averaging the motion at scales smaller than α. The derivation involves an averaging procedure that combines ideas from both the material (Lagrangian) and spatial (Eulerian) viewpoints. This framework allows the use of a variant of G. I. Taylor's ``frozen turbulence' hypothesis as the foundation for the model equations; more precisely, the derivation is based on the strong physical assumption that fluctutations are frozen into the mean flow. In this article, we use this hypothesis to derive the averaged Lagrangian for the theory, and all the terms up to and including order α2 are accounted for. The equations come in both an isotropic and anisotropic version. The anisotropic equations are a coupled system of PDEs (partial differential equations) for the mean velocity field and the Lagrangian covariance tensor. In earlier works by Foias, Holm & Titi [10], and ourselves [16], an analysis of the isotropic equations has been given. In the second part of this paper, we establish local in time well-posedness of the anisotropic LANS-α equations using quasilinear PDE type methods. (Accepted September 2, 2002) Published online November 26, 2002 Dedicated to Stuart Antman on the occasion of his 60th birthday Communicated by S. MüLLER  相似文献   

6.
The steady two-dimensional flow of an incompressible viscous and electrically conducting fluid over a non-linearly semi-infinite stretching sheet in the presence of a chemical reaction and under the influence of a magnetic field is analyzed. The equations governing the flow and concentration field are reduced to a system of coupled non-linear ordinary differential equations. These non-linear differential equations are solved numerically by using the shooting method. The numerical results for the concentration field are presented through graphs.  相似文献   

7.
This study is motivated by problems arising in oceanic dynamics. Our focus is the Navier–Stokes equations in a three-dimensional domain Ωɛ, whose thickness is of order O(ɛ) as ɛ → 0, having non-trivial topography. The velocity field is subject to the Navier friction boundary conditions on the bottom and top boundaries of Ωɛ, and to the periodicity condition on its sides. Assume that the friction coefficients are of order O3/4) as ɛ → 0. It is shown that if the initial data, respectively, the body force, belongs to a large set of H1ɛ), respectively, L2ɛ), then the strong solution of the Navier–Stokes equations exists for all time. Our proofs rely on the study of the dependence of the Stokes operator on ɛ, and the non-linear estimate in which the contributions of the boundary integrals are non-trivial.  相似文献   

8.
A finite-difference analysis for the transient free convection flow of an incompressible viscous fluid past a vertical cone with variable wall surface temperature T w (x) = T + a x n varying as power function of distance from the apex (x = 0) is presented here. The dimensionless governing equations of the flow that are unsteady, coupled and non-linear partial differential equations are solved by an efficient, accurate and unconditionally stable finite difference scheme of Crank-Nicolson type. The velocity and temperature fields have been studied for various parameters such as Prandtl number and n (exponent in power law variation in surface temperature). The local as well as average skin-friction and Nusselt number are also presented and analyzed graphically. The present results are compared with available results in literature and are found to be in good agreement.  相似文献   

9.
An analysis is made for the steady two-dimensional magneto-hydrodynamic flow of an incompressible viscous and electrically conducting fluid over a stretching vertical sheet in its own plane. The stretching velocity, the surface temperature and the transverse magnetic field are assumed to vary in a power-law with the distance from the origin. The transformed boundary layer equations are solved numerically for some values of the involved parameters, namely the magnetic parameter M, the velocity exponent parameter m, the temperature exponent parameter n and the buoyancy parameter λ, while the Prandtl number Pr is fixed, namely Pr = 1, using a finite difference scheme known as the Keller-box method. Similarity solutions are obtained in the presence of the buoyancy force if n = 2m−1. The features of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. It is found that both the skin friction coefficient and the local Nusselt number decrease as the magnetic parameter M increases for fixed λ and m. For m = 0.2 (i.e. n = −0.6), although the sheet and the fluid are at different temperatures, there is no local heat transfer at the surface of the sheet except at the singular point of the origin (fixed point).  相似文献   

10.
This study is concerned with the magnetohydrodynamic (MHD) rotating boundary layer flow of a viscous fluid caused by the shrinking surface. Homotopy analysis method (HAM) is employed for the analytic solution. The similarity transformations have been used for reducing the partial differential equations into a system of two coupled ordinary differential equations. The series solution of the obtained system is developed and convergence of the results are explicitly given. The effects of the parameters M, s and λ on the velocity fields are presented graphically and discussed. It is worth mentioning here that for the shrinking surface the stable and convergent solutions are possible only for MHD flows.  相似文献   

11.
Oscillatory MHD Couette flow of electrically conducting fluid between two parallel plates in a rotating system in the presence of an inclined magnetic field is considered when the upper plate is held at rest and the lower plate oscillates non-torsionally . An exact solution of the governing equations has been obtained by using Laplace transform technique. Asymptotic behavior of the solution is analyzed for M 2 1, K 2 1 and ω 1 and for large M 2, K 2 and ω. Numerical results of velocities are depicted graphically and the frictional shearing stresses are presented in tables. It is found that a thin boundary layer is formed near the lower plate, for large values of rotation parameter K 2, Hartman number M 2 and frequency parameter ω. The thickness of this boundary layer increases with increase in inclination of the magnetic field with the axis of rotation.  相似文献   

12.
Plastic surface strain mapping of bent sheets by image correlation   总被引:2,自引:0,他引:2  
A technique using a single CCD camera, a precision rotation/translation stage, a telecentric zoom lens, and digital image correlation software is described for measuring surface profiles and surface plastic strain distributions of a bent thin sheet. The measurement principles, based on both parallel and pinhole perspective projections, are outlined and the relevant mathematical equations for computing the profiles and displacement fields on a curved surface are presented. The typical optical setup as well as the experimental measurement and digital image correlation analysis procedure are described. The maximum errors in the in-plane and out-of-plane coordinates or displacements are about ±5 and ±25 μm, respectively, and the maximum errors in surface strain mapping are about 0.1% or less based on a series of evaluation tests on flat and curved sample surfaces over a physical field of view of 15.2 × 11.4 mm2. As an application example, the shape and surface plastic strain distribution example, the shape and surface plastic strain distributions around a bent apex of a flat 2 mm thick automotive aluminum AA5182-O sheet, which underwent a 90° bend with three bend ratios of 2t, 1t, and 0.6t, are determined using the proposed technique.  相似文献   

13.
In the present work, the effect of MHD flow and heat transfer within a boundary layer flow on an upper-convected Maxwell (UCM) fluid over a stretching sheet is examined. The governing boundary layer equations of motion and heat transfer are non-dimensionalized using suitable similarity variables and the resulting transformed, ordinary differential equations are then solved numerically by shooting technique with fourth order Runge–Kutta method. For a UCM fluid, a thinning of the boundary layer and a drop in wall skin friction coefficient is predicted to occur for higher the elastic number. The objective of the present work is to investigate the effect of Maxwell parameter β, magnetic parameter Mn and Prandtl number Pr on the temperature field above the sheet.  相似文献   

14.
Thermocapillary- and buoyancy-driven convection in open cavities with differentially heated endwalls is investigated by numerical solutions of the two-dimensional Navier-Stokes equations coupled with the energy equation. We studied the thermocapillary and buoyancy convection in the cavities, filled with low-Prandtl-number fluids, with two aspect-ratiosA=1 and 4, Grashof number up to 105 and Reynolds number ⋎Re⋎≤104. Our results show that thermocapillary can have a quite significant effect on the stability of a primarily buoyancy-driven flow, as well as on the flow structures and dynamic behavior for both additive effect (i.e., positiveRe) and opposing effect (i.e., negativeRe).  相似文献   

15.
Saint-Venant's torsion of symmetric cylindrical bars consisting of two or four homogeneous phases is studied. A symmetric section is meant that the cross section of the cylindrical bar possesses reflectional symmetry with respect to one or more axes. Each constituent region may have different shear modulus. The idea of the analysis is to superimpose suitably reflected potentials to obtain the torsion solution of the same composite section but with different moduli. For two-phase sections, we show that, if the warping fields for a given symmetric section with phase shear moduli μ1 and μ2 are known a priori, then the warping fields for the same configuration but with a different set of constituent moduli μ1 and μ2 are readily found through simple linear superpositions. Further, suppose that the torsional rigidities T12) and T1 2 ) for any two sets of phase moduli can be measured by some experimental tests or evaluated through numerical procedures, then the torsional rigidity for any other combinations of constituent moduli T1 ′′2 ′′) can be exactly determined without any recourse to the field solutions of governing differential equations. Similar procedures can be applied to a 4-phase symmetric section. But the coefficients of superposition are only found for a few branches. Specifically, we find that depending on the conditions of μ and μ, admissible solutions can be divided into three categories. When the correspondence between the warping field is known to exist, a link between the torsional rigidities can be established as well. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
We consider non-linear viscous shallow water models with varying topography, extra friction terms and capillary effects, in a two-dimensional framework. Water-depth dependent laminar and turbulent friction coefficients issued from an asymptotic analysis of the three-dimensional free-surface Navier–Stokes equations are considered here. A new proof of stability for global weak solutions is given in periodic domain Ω = T2, adapting the method introduced by J. Simon in [15] for the non-homogeneous Navier–Stokes equations. Existence results for such solutions can be obtained from this stability analysis.  相似文献   

17.
A perturbation solution of the fully developed flow through a pipe of circular cross-section, which rotates uniformly around an axis oriented perpendicularly to its own, is considered. The perturbation parameter is given by R = 2Ωa2/ν in terms of the angular velocity Ω, the pipe radius a and the kinematic viscosity ν of the fluid. The two coupled non-linear equations for the axial velocity ω and the streamfunction ? of the transverse (secondary) flow lead to an infinite system of linear equations. This system allows first the computation of a given order ?n, n ? 1, of the perturbation expansion ? = ∑ Rn?n in terms of ωn-1, the (n-1)-th order of the expansion ω = ∑ Rnωn, and of the lower orders ?1,…,?n ? 1. Then it permits the computation of ωn from ω0,…,ωn ? 1 and ?1,…,?;n. The computation starts from the Hagen–Poiseuille flow ω0, i.e. the perturbation is around this flow. The computations are performed analytically by computer, with the REDUCE and MAPLE systems. The essential elements for this are the appropriate co-ordinates: in the complex co-ordinates chosen the two-dimensional harmonic (Laplace, Δ) and biharmonic (Δ2) operators are ideally suited for (symbolic) quadratures. Symmetry considerations as well as analysis of the equations for ωn, ?n and of the boundary conditions lead to general (polynomial) formulae for these functions, with coeffcients to be determined. Their determination, order by order, implies, in complex co-ordinates, only (symbolic) differentiation and quadratures. The coefficients themselves are polynomials in the Reynolds number c of the (unperturbed) Hagen–Poiseuille flow. They are tabulated in the paper for the orders n ? 6 of the perturbation expansion.  相似文献   

18.
This paper is mainly concerned with designing modified tabbing systems for testing of composite thin-walled tubes with symmetric layup. The modified tabs are presented based on the concept of iso-displacement points—the points of the specimen that move together and behave similarly during a test. Numerical solutions are carried out for tubular specimens in order to find the displacement field and hence the iso-displacement points. The analyses are carried out for two loading cases: pure torsion and pure tension. Finite element analyses are conducted for both cases, to estimate the displacement fields of thin-walled tubular specimens and then predictive equation were determined using multiple nonlinear regression models. The accuracy of these models is evaluated using a multiple coefficient of determination, R 2, where 0 ≤ R 2 ≤ 1, coupled with predicted squared error (PSE) and mean squared error (MSE). R 2 is found to be greater than or equal to 0.98 for all cases considered in this study while PSE and MSE values are minimized, demonstrating the reliability of the model. Comparison between the modified tabs, based on the iso-displacement points determined by predictive equations, with conventional tabs indicates an improvement in the uniformity of stress and strain distribution (which is an important factor in order to have a successful test) within the specimen for both load cases. It is also demonstrated that due to the elimination of the stress and strain non-uniformities, the measured permissible maximum load of the specimens is significantly increased during the test.  相似文献   

19.
The onset of convective instability in an initially quiescent, stably stratified fluid layer between two horizontal plates is analyzed with linear theory. The bottom boundary is heated suddenly from below, subjected to a step change in surface temperature. The critical time t c to mark the onset of Rayleigh-Bénard convection is predicted by propagation theory. This theory uses the length scaled by , where α denotes thermal diffusivity. Under the normal mode analysis the dimensionless disturbance equations are obtained as a function of τ(=αt/d 2) and ζ(=Z/), where d is the fluid layer depth and Z is the vertical distance. The resulting equations are transformed to self-similar ones by using scaling and finally fixing τ as τc under the frame of coordinates τ and ζ. For a given γ, Pr and τc, the minimum value of Ra is obtained from the marginal stability curve. Here γ denotes the temperature ratio to represent the degree of stabilizing effect, Pr is the Prandtl number and Ra is the Rayleigh number. With γ=0, the minimum Ra value approaches the well-known value of 1708 as τc increases. However, it is inversely proportional to τc 3/2 as τc decreases. With increasing γ, the system becomes more stable. It is interesting that in the present system, propagation theory produces the stability criteria to bound the available experimental data over the whole domain of time. Received 5 November 2001 and accepted 29 March 2002 Published online: 2 October 2002 RID="*" ID="*" This work has been supported by both SK Chemicals Co. Ltd. and LG Chemical Ltd., Seoul under the Brain Korea 21 Project of the Ministry of Education. Communicated by H.J.S. Fernando  相似文献   

20.
The combined effect of rotation and magnetic field is investigated for the axisymmetric flow due to the motion of a sphere in an inviscid, incompressible electrically conducting fluid having uniform rotation far upstream. The steady-state linearized equations contain a single parameter α=1/2βR m, β being the magnetic pressure number and R m the magnetic Reynolds number. The complete solution for the flow field and magnetic field is obtained and the distribution of vorticity and current density is found. The induced vorticity is O(α4) and the current density is O(R m) on the sphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号