首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
In the first part of this article, we employ Thomason's Lollipop Lemma 25 to prove that bridgeless cubic graphs containing a spanning lollipop admit a cycle double cover (CDC) containing the circuit in the lollipop; this implies, in particular, that bridgeless cubic graphs with a 2‐factor F having two components admit CDCs containing any of the components in the 2‐factor, although it need not have a CDC containing all of F. As another example consider a cubic bridgeless graph containing a 2‐factor with three components, all induced circuits. In this case, two of the components may separately be used to start a CDC although it is uncertain whether the third component may be part of some CDC. Numerous other corollaries shall be given as well. In the second part of the article, we consider special types of bridgeless cubic graphs for which a prominent circuit can be shown to be included in a CDC. The interest here is the proof technique and therefore we only give the simplest case of the theorem. Notably, we show that a cubic graph that consists of an induced 2k‐circuit C together with an induced 4k‐circuit T and an independent set of 2k vertices, each joined by one edge to C and two edges to T, has a CDC starting with T.  相似文献   

2.
Let G be a topological graph with n vertices, i.e., a graph drawn in the plane with edges drawn as simple Jordan curves. It is shown that, for any constants k,l, there exists another constant C(k,l), such that if G has at least C(k,l)n edges, then it contains a k×l-gridlike configuration, that is, it contains k+l edges such that each of the first k edges crosses each of the last l edges. Moreover, one can require the first k edges to be incident to the same vertex. Received: April, 2003 Janos Pach and Micha Sharir has been supported by NSF Grants CCR-97-32101 and CCR-00-98246, and by a joint grant from the U.S.–Israel Binational Science Foundation. János Pach has also been supported by PSC-CUNY Research Award 63382-0032 and by OTKA T-032452. Micha Sharir has also been supported by a grant from the Israeli Academy of Sciences for a Center of Excellence in Geometric Computing at Tel Aviv University, and by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University. Géza Tóth has been supported by OTKA-T-038397 and by an award from the New York University Research Challenge Fund.  相似文献   

3.
We build a new probability measure on closed space and plane polygons. The key construction is a map, given by Hausmann and Knutson, using the Hopf map on quaternions from the complex Stiefel manifold of 2‐frames in n‐space to the space of closed n‐gons in 3‐space of total length 2. Our probability measure on polygon space is defined by pushing forward Haar measure on the Stiefel manifold by this map. A similar construction yields a probability measure on plane polygons that comes from a real Stiefel manifold. The edgelengths of polygons sampled according to our measures obey beta distributions. This makes our polygon measures different from those usually studied, which have Gaussian or fixed edgelengths. One advantage of our measures is that we can explicitly compute expectations and moments for chord lengths and radii of gyration. Another is that direct sampling according to our measures is fast (linear in the number of edges) and easy to code. Some of our methods will be of independent interest in studying other probability measures on polygon spaces. We define an edge set ensemble (ESE) to be the set of polygons created by rearranging a given set of n edges. A key theorem gives a formula for the average over an ESE of the squared lengths of chords skipping k vertices in terms of k, n, and the edgelengths of the ensemble. This allows one to easily compute expected values of squared chord lengths and radii of gyration for any probability measure on polygon space invariant under rearrangements of edges. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
In this article, we prove that a line graph with minimum degree δ≥7 has a spanning subgraph in which every component is a clique of order at least three. This implies that if G is a line graph with δ≥7, then for any independent set S there is a 2‐factor of G such that each cycle contains at most one vertex of S. This supports the conjecture that δ≥5 is sufficient to imply the existence of such a 2‐factor in the larger class of claw‐free graphs. It is also shown that if G is a claw‐free graph of order n and independence number α with δ≥2n/α?2 and n≥3α3/2, then for any maximum independent set S, G has a 2‐factor with α cycles such that each cycle contains one vertex of S. This is in support of a conjecture that δ≥n/α≥5 is sufficient to imply the existence of a 2‐factor with α cycles, each containing one vertex of a maximum independent set. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 251–263, 2012  相似文献   

5.
Consider the random graph process that starts from the complete graph on n vertices. In every step, the process selects an edge uniformly at random from the set of edges that are in a copy of a fixed graph H and removes it from the graph. The process stops when no more copies of H exist. When H is a strictly 2‐balanced graph we give the exact asymptotics on the number of edges remaining in the graph when the process terminates and investigate some basic properties namely the size of the maximal independent set and the presence of subgraphs.  相似文献   

6.
An antimagic labelling of a graph G with m edges and n vertices is a bijection from the set of edges of G to the set of integers {1,…,m}, such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called antimagic if it admits an antimagic labelling. In N. Hartsfield and G. Ringle, Pearls in Graph Theory, Academic Press, Inc., Boston, 1990, Ringel has conjectured that every simple connected graph, other than K2, is antimagic. In this article, we prove a special case of this conjecture. Namely, we prove that if G is a graph on n=pk vertices, where p is an odd prime and k is a positive integer that admits a Cp‐factor, then it is antimagic. The case p=3 was proved in D. Hefetz, J Graph Theory 50 (2005), 263–272. Our main tool is the combinatorial Nullstellensatz [N. Alon, Combin Probab Comput 8(1–2) (1999), 7–29]. © 2009 Wiley Periodicals, Inc. J Graph Theory 65: 70–82, 2010.  相似文献   

7.
We show that a set M of m edges in a cyclically (3m ? 2)‐edge‐connected cubic bipartite graph is contained in a 1‐factor whenever the edges in M are pairwise distance at least f(m) apart, where © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 112–120, 2007  相似文献   

8.
The restricted‐edge‐connectivity of a graph G, denoted by λ′(G), is defined as the minimum cardinality over all edge‐cuts S of G, where GS contains no isolated vertices. The graph G is called λ′‐optimal, if λ′(G) = ξ(G), where ξ(G) is the minimum edge‐degree in G. A graph is super‐edge‐connected, if every minimum edge‐cut consists of edges adjacent to a vertex of minimum degree. In this paper, we present sufficient conditions for arbitrary, triangle‐free, and bipartite graphs to be λ′‐optimal, as well as conditions depending on the clique number. These conditions imply super‐edge‐connectivity, if δ (G) ≥ 3, and the equality of edge‐connectivity and minimum degree. Different examples will show that these conditions are best possible and independent of other results in this area. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 228–246, 2005  相似文献   

9.
This paper discusses the problem of finding the maximum number of edges E(m, n, B) in a bipartite graph having partite set sizes m and n and bandwidth B. Exact values for E(m, n, B) are found for many cases. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 278–289, 2000  相似文献   

10.
We give a sufficient condition for a simple graph G to have k pairwise edge‐disjoint cycles, each of which contains a prescribed set W of vertices. The condition is that the induced subgraph G[W] be 2k‐connected, and that for any two vertices at distance two in G[W], at least one of the two has degree at least |V(G)|/2 + 2(k ? 1) in G. This is a common generalization of special cases previously obtained by Bollobás/Brightwell (where k = 1) and Li (where W = V(G)). A key lemma is of independent interest. Let G be the complement of a bipartite graph with partite sets X, Y. If G is 2k connected, then G contains k Hamilton cycles that are pairwise edge‐disjoint except for edges in G[Y]. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

11.
A graph is called fragile if it has a vertex cut which is also an independent set. Chen and Yu proved that every graph with n vertices and at most 2n?4 edges is fragile, which was conjectured to be true by Caro. However, their proof does not give any information on the number of vertices in the independent cuts. The purpose of this paper is to investigate when a graph has a small independent cut. We show that if G is a graph on n vertices and at most (12n/7)?3 edges, then G contains an independent cut S with ∣S∣≤3. Upper bounds on the number of edges of a graph having an independent cut of size 1 or 2 are also obtained. We also show that for any positive integer k, there is a positive number ε such that there are infinitely many graphs G with n vertices and at most (2?ε)n edges, but G has no independent cut with less than k vertices. © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 327–341, 2002  相似文献   

12.
It is well known [9] that finding a maximal independent set in a graph is in class NC and [10] that finding a maximal independent set in a hypergraph with fixed dimension is in RNC. It is not known whether this latter problem remains in NC when the dimension is part of the input. We will study the problem when the problem instances are randomly chosen. It was shown in [6] that the expected running time of a simple parallel algorithm for finding the lexicographically first maximal independent set (Ifmis) in a random simple graph is logarithmic in the input size. In this paper, we will prove a generalization of this result. We show that if a random k-uniform hypergraph has vertex set {1, 2, …, n} and its edges are chosen independently with probability p from the set of (nk) possible edges, then our algorithm finds the Ifmis in O( ) expected time. The hidden constant is independent of k, p. © 1996 John Wiley & Sons, Inc. Random Struct. Alg., 9 , 359–377 (1996)  相似文献   

13.
We prove that the minimum number of edges in a vertex‐diameter‐2‐critical graph on n ≥ 23 vertices is (5n ? 17)/2 if n is odd, and is (5n/2) ? 7 if n is even. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

14.
For a signed graph G and function , a signed f‐factor of G is a spanning subgraph F such that sdegF(υ) = f(υ) for every vertex υ of G, where sdeg(υ) is the number of positive edges incident with v less the number of negative edges incident with υ, with loops counting twice in either case. For a given vertex‐function f, we provide necessary and sufficient conditions for a signed graph G to have a signed f‐factor. As a consequence of this result, an Erd?s‐Gallai‐type result is given for a sequence of integers to be the degree sequence of a signed r‐graph, the graph with at most r positive and r negative edges between a given pair of distinct vertices. We discuss how the theory can be altered when mixed edges (i.e., edges with one positive and one negative end) are allowed, and how it applies to bidirected graphs. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 27–36, 2006  相似文献   

15.
An antimagic labeling of a graph with m edges and n vertices is a bijection from the set of edges to the integers 1,…,m such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called antimagic if it has an antimagic labeling. In [ 10 ], Ringel conjectured that every simple connected graph, other than K2, is antimagic. We prove several special cases and variants of this conjecture. Our main tool is the Combinatorial NullStellenSatz (cf. [ 1 ]). © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

16.
Given a hypergraph, a partition of its vertex set, and a nonnegative integer k, find a minimum number of graph edges to be added between different members of the partition in order to make the hypergraph k‐edge‐connected. This problem is a common generalization of the following two problems: edge‐connectivity augmentation of graphs with partition constraints (J. Bang‐Jensen, H. Gabow, T. Jordán, Z. Szigeti, SIAM J Discrete Math 12(2) (1999), 160–207) and edge‐connectivity augmentation of hypergraphs by adding graph edges (J. Bang‐Jensen, B. Jackson, Math Program 84(3) (1999), 467–481). We give a min–max theorem for this problem, which implies the corresponding results on the above‐mentioned problems, and our proof yields a polynomial algorithm to find the desired set of edges.  相似文献   

17.
A graph is 1‐planar if it can be drawn on the plane so that each edge is crossed by no more than one other edge (and any pair of crossing edges cross only once). A non‐1‐planar graph G is minimal if the graph is 1‐planar for every edge e of G. We construct two infinite families of minimal non‐1‐planar graphs and show that for every integer , there are at least nonisomorphic minimal non‐1‐planar graphs of order n. It is also proved that testing 1‐planarity is NP‐complete.  相似文献   

18.
Let G = (V(G),E(G)) be a graph. A (ν, G, λ)‐GD is a partition of all the edges of λKν into subgraphs (G‐blocks), each of which is isomorphic to G. The (ν, G, λ)‐GD is named as graph design for G or G‐decomposition. The large set of (ν, G, λ)‐GD is denoted by (ν, G, λ)‐LGD. In this paper, we obtain a general result by using the finite fields, that is, if qk ≥ 2 is an odd prime power, then there exists a (q,Pk, k ? 1)‐LGD. © 2005 Wiley Periodicals, Inc. J Combin Designs.  相似文献   

19.
In 15 , Thomassen proved that any triangle‐free k‐connected graph has a contractible edge. Starting with this result, there are several results concerning the existence of contractible elements in k‐connected graphs which do not contain specified subgraphs. These results extend Thomassen's result, cf., 2 , 3 , 9 - 13 . In particular, Kawarabayashi 12 proved that any k‐connected graph without K subgraphs contains either a contractible edge or a contractible triangle. In this article, we further extend these results, and prove the following result. Let k be an integer with k ≥ 6. If G is a k‐connected graph such that G does not contain as a subgraph and G does not contain as an induced subgraph, then G has either a contractible edge which is not contained in any triangle or a contractible triangle. © 2008 Wiley Periodicals, Inc. J Graph Theory 58:97–109, 2008  相似文献   

20.
It is known [A. M. Frieze, Discrete Appl Math 10 (1985), 47–56] that if the edge costs of the complete graph Kn are independent random variables, uniformly distributed between 0 and 1, then the expected cost of the minimum spanning tree is asymptotically equal to . Here we consider the following stochastic two‐stage version of this optimization problem. There are two sets of edge costs cM: E → ? and cT: E → ?, called Monday's prices and Tuesday's prices, respectively. For each edge e, both costs cM(e) and cT(e) are independent random variables, uniformly distributed in [0, 1]. The Monday costs are revealed first. The algorithm has to decide on Monday for each edge e whether to buy it at Monday's price cM(e), or to wait until its Tuesday price cT(e) appears. The set of edges XM bought on Monday is then completed by the set of edges XT bought on Tuesday to form a spanning tree. If both Monday's and Tuesday's prices were revealed simultaneously, then the optimal solution would have expected cost ζ(3)/2 + o(1). We show that, in the case of two‐stage optimization, the expected value of the optimal cost exceeds ζ(3)/2 by an absolute constant ε > 0. We also consider a threshold heuristic, where the algorithm buys on Monday only edges of cost less than α and completes them on Tuesday in an optimal way, and show that the optimal choice for α is α = 1/n with the expected cost ζ(3) ? 1/2 + o(1). The threshold heuristic is shown to be sub‐optimal. Finally we discuss the directed version of the problem, where the task is to construct a spanning out‐arborescence rooted at a fixed vertex r, and show, somewhat surprisingly, that in this case a simple variant of the threshold heuristic gives the asymptotically optimal value 1 ? 1/e + o(1). © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号