首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The packing chromatic number \(\chi _{\rho }(G)\) of a graph G is the smallest integer k such that the vertex set of G can be partitioned into sets \(V_i\), \(i\in [k]\), where each \(V_i\) is an i-packing. In this paper, we investigate for a given triple (abc) of positive integers whether there exists a graph G such that \(\omega (G) = a\), \(\chi (G) = b\), and \(\chi _{\rho }(G) = c\). If so, we say that (abc) is realizable. It is proved that \(b=c\ge 3\) implies \(a=b\), and that triples \((2,k,k+1)\) and \((2,k,k+2)\) are not realizable as soon as \(k\ge 4\). Some of the obtained results are deduced from the bounds proved on the packing chromatic number of the Mycielskian. Moreover, a formula for the independence number of the Mycielskian is given. A lower bound on \(\chi _{\rho }(G)\) in terms of \(\Delta (G)\) and \(\alpha (G)\) is also proved.  相似文献   

2.
Given a simple plane graph G, an edge‐face k‐coloring of G is a function ? : E(G) ∪ F(G) → {1,…,k} such that, for any two adjacent or incident elements a, bE(G) ∪ F(G), ?(a) ≠ ?(b). Let χe(G), χef(G), and Δ(G) denote the edge chromatic number, the edge‐face chromatic number, and the maximum degree of G, respectively. In this paper, we prove that χef(G) = χe(G) = Δ(G) for any 2‐connected simple plane graph G with Δ (G) ≥ 24. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

3.
If a graph G has no induced subgraph isomorphic to K1,3′ K5-e, or a third graph that can be selected from two specific graphs, then the chromatic number of G is either d or d + 1, where d is the maximum order of a clique in G.  相似文献   

4.
If the simplicial complex formed by the neighborhoods of points of a graph is (k ? 2)-connected then the graph is not k-colorable. As a corollary Kneser's conjecture is proved, asserting that if all n-subsets of a (2n ? k)-element set are divided into k + 1 classes, one of the classes contains two disjoint n-subsets.  相似文献   

5.
The 1‐chromatic number χ1(Sp) of the orientable surface Sp of genus p is the maximum chromatic number of all graphs which can be drawn on the surface so that each edge is crossed by no more than one other edge. We show that if there exists a finite field of order 4m+1, m≥3, then 8m+2≤χ1(S)≤8m+3, where 8m+3 is Ringel's upper bound on χ1(S). © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 179–184, 2010  相似文献   

6.
We consider the minimum number of edges in ak-edge-connected graph of ordern with chromatic number at leastc, obtaining the optimal bounds in most cases.  相似文献   

7.
Let G be a graph of order n, maximum degree Δ, and minimum degree δ. Let P(G, λ) be the chromatic polynomial of G. It is known that the multiplicity of zero “0” of P(G, λ) is one if G is connected, and the multiplicity of zero “1” of P(G, λ) is one if G is 2‐connected. Is the multiplicity of zero “2” of P(G, λ) at most one if G is 3‐connected? In this article, we first construct an infinite family of 3‐connected graphs G such that the multiplicity of zero “2” of P(G, λ) is more than one, and then characterize 3‐connected graphs G with Δ + δ?n such that the multiplicity of zero “2” of P(G, λ) is at most one. In particular, we show that for a 3‐connected graph G, if Δ + δ?n and (Δ, δ3)≠(n?3, 3), where δ3 is the third minimum degree of G, then the multiplicity of zero “2” of P(G, λ) is at most one. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

8.
Erd?s conjectured that if G is a triangle free graph of chromatic number at least k≥3, then it contains an odd cycle of length at least k 2?o(1) [13,15]. Nothing better than a linear bound ([3], Problem 5.1.55 in [16]) was so far known. We make progress on this conjecture by showing that G contains an odd cycle of length at least Ω(k log logk). Erd?s’ conjecture is known to hold for graphs with girth at least five. We show that if a graph with girth four is C 5 free, then Erd?s’ conjecture holds. When the number of vertices is not too large we can prove better bounds on χ. We also give bounds on the chromatic number of graphs with at most r cycles of length 1 mod k, or at most s cycles of length 2 mod k, or no cycles of length 3 mod k. Our techniques essentially consist of using a depth first search tree to decompose the graph into ordered paths, which are then fed to an online coloring algorithm. Using this technique we give simple proofs of some old results, and also obtain several other results. We also obtain a lower bound on the number of colors which an online coloring algorithm needs to use to color triangle free graphs.  相似文献   

9.
Let G be a graph with a nonempty edge set, and with rank rk(G), term rank Rk(G), and chromatic number χ(G). We characterize Rk(G) as being the maximum number of colors in certain proper colorings of G. In particular, we observe that χ(G)Rk(G), with equality holding if and only if (besides isolated vertices) G is either complete or a star. For a twin-free graph G, we observe the bound and we show that this bound is sharp.  相似文献   

10.
It was only recently shown by Shi and Wormald, using the differential equation method to analyze an appropriate algorithm, that a random 5‐regular graph asymptotically almost surely has chromatic number at most 4. Here, we show that the chromatic number of a random 5‐regular graph is asymptotically almost surely equal to 3, provided a certain four‐variable function has a unique maximum at a given point in a bounded domain. We also describe extensive numerical evidence that strongly suggests that the latter condition holds. The proof applies the small subgraph conditioning method to the number of locally rainbow balanced 3‐colorings, where a coloring is balanced if the number of vertices of each color is equal, and locally rainbow if every vertex is adjacent to at least one vertex of each of the other colors. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 157–191, 2009  相似文献   

11.
12.
A generalization of the chromatic number of a graph is introduced such that the colors are integers modulo n, and the colors on adjacent vertices are required to be as far apart as possible.  相似文献   

13.
We introduce an approach to certain geometric variational problems based on the use of the algorithmic unrecognizability of the n-dimensional sphere for n ≥ 5. Sometimes this approach allows one to prove the existence of infinitely many solutions of a considered variational problem. This recursion-theoretic approach is applied in this paper to a class of functionals on the space of C1.1-smooth hypersurfaces diffeomorphic to Sn in Rn+1, where n is any fixed number ≥ 5. The simplest of these functionals kv is defined by the formula kvn) = (voln))1/n/rn), where rn) denotes the radius of injectivity of the normal exponential map for Σn ? Rn+l. We prove the existence of an infinite set of distinct locally minimal values of kv on the space of C1.1-smooth topological hyperspheres in Rn+1 for any n ≥ 5. The functional kv naturally arises when one attempts to generalize knot theory in order to deal with embeddings and isotopies of “thick” circles and, more generally, “thick” spheres into Euclidean spaces. We introduce the notion of knot “with thick rope” types. The theory of knot “with thick rope” types turns out to be quite different from the classical knot theory because of the following result: There exists an infinite set of non-trivial knot “with thick rope” types in codimension one for every dimension greater than or equal to five.  相似文献   

14.
The exchange networks that social psychologists have studied can usefully be represented as game theoretic 2‐sided assignment games. Conceiving of these networks as 2‐sided assignment games opens up the possibility of studying N‐sided assignment games and games without cores. 2‐sided assignment games are special in that they always have cores, stable solutions in which every individual and subgroup behave rationally.

The implicit assignment of positions to categories of an N‐sided assignment game is related to coloring a graph. The color classes form sets of positions with potentially related interests. Color equivalence is compared to structural, regular, automorphic, and ecological positional equivalence.  相似文献   

15.
For each pair k, m of natural numbers there exists a natural number f(k, m) such that every f(k, m)-chromatic graph contains a k-connected subgraph of chromatic number at least m.  相似文献   

16.
An Erratum has been published for this article in Journal of Graph Theory 48: 329–330, 2005 . Let M be a set of positive integers. The distance graph generated by M, denoted by G(Z, M), has the set Z of all integers as the vertex set, and edges ij whenever |i?j| ∈ M. We investigate the fractional chromatic number and the circular chromatic number for distance graphs, and discuss their close connections with some number theory problems. In particular, we determine the fractional chromatic number and the circular chromatic number for all distance graphs G(Z, M) with clique size at least |M|, except for one case of such graphs. For the exceptional case, a lower bound for the fractional chromatic number and an upper bound for the circular chromatic number are presented; these bounds are sharp enough to determine the chromatic number for such graphs. Our results confirm a conjecture of Rabinowitz and Proulx 22 on the density of integral sets with missing differences, and generalize some known results on the circular chromatic number of distance graphs and the parameter involved in the Wills' conjecture 26 (also known as the “lonely runner conjecture” 1 ). © 2004 Wiley Periodicals, Inc. J Graph Theory 47: 129–146, 2004  相似文献   

17.
《Discrete Mathematics》2002,231(1-3):257-262
Let β(G) and IR(G) denote the independence number and the upper irredundance number of a graph G. We prove that in any graph of order n, minimum degree δ and maximum degree Δ≠0, IR(G)⩽n/(1+δ/Δ) and IR(G)−β(G)⩽((Δ−2)/2Δ)n. The two bounds are attained by arbitrarily large graphs. The second one proves a conjecture by Rautenbach related to the case Δ=3. When the chromatic number χ of G is less than Δ, it can be improved to IR(G)−β(G)⩽((χ−2)/2χ)n in any non-empty graph of order n⩾2.  相似文献   

18.
19.
The First‐Fit (or Grundy) chromatic number of G, written as χFF(G), is defined as the maximum number of classes in an ordered partition of V(G) into independent sets so that each vertex has a neighbor in each set earlier than its own. The well‐known Nordhaus‐‐Gaddum inequality states that the sum of the ordinary chromatic numbers of an n‐vertex graph and its complement is at most n + 1. Zaker suggested finding the analogous inequality for the First‐Fit chromatic number. We show for n ≥ 10 that ?(5n + 2)/4? is an upper bound, and this is sharp. We extend the problem for multicolorings as well and prove asymptotic results for infinitely many cases. We also show that the smallest order of C4‐free bipartite graphs with χFF(G) = k is asymptotically 2k2 (the upper bound answers a problem of Zaker [9]). © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 75–88, 2008  相似文献   

20.
We investigate the local chromatic number of shift graphs and prove that it is close to their chromatic number. This implies that the gap between the directed local chromatic number of an oriented graph and the local chromatic number of the underlying undirected graph can be arbitrarily large. We also investigate the minimum possible directed local chromatic number of oriented versions of “topologically t‐chromatic” graphs. We show that this minimum for large enough t‐chromatic Schrijver graphs and t‐chromatic generalized Mycielski graphs of appropriate parameters is ?t/4?+1. © 2010 Wiley Periodicals, Inc. J Graph Theory 66: 65‐82, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号