首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Charge transfer reactions between a dropping mercury electrode and a [Mn‐antibiotics‐cephalothin] system were studied at pH = 7.30 ± 0.01, μ = 1.0 MNaClO4 at 298 K. The antibiotics were doxycycline, chlortetracycline, oxytetracycline, tetracycline, minocycline, amoxicillin and chloramphenicol used as primary ligands and cephalothin as secondary ligand formed 1:1:1, 1:1:2 and 1:2:1 complexes with Zn2. Electrode kinetics was discussed on the basis of kinetic parameters viz. transfer coefficient (α), degree of irreversibility (λ), diffusion coefficient (D) and rate constant (k). The values of α varied from 0.40 to 0.57 (0.50) confirm that ‘transition state’ behaves between reactant and product response to applied potential and it lies always between d.m.e. and solution interface. A small variation in potential affects the rate and rate constant greatly.  相似文献   

2.
To survey the influence of aza‐aromatic co‐ligands on the structure of Cadmium(II) sulfonates, three Cd(II) complexes with mixed‐ligand, [CdII(ANS)2(phen)2] ( 1 ), [CdII(ANS)2(2,2′‐bipy)2] ( 2 ) and [CdII(ANS)2(4,4′‐bipy)2]n ( 3 ) (ANS = 2‐aminonaphthalene‐1‐sulfonate; phen = 1,10‐phenanthroline; 2,2′‐bipy = 2,2′‐bipyridine; 4,4′‐bipy = 4,4′‐bipyridine) were synthesized by hydrothermal methods and structurally characterized by elemental analyses, IR spectra, and single crystal X‐ray diffraction. Of the three complexes, ANS consistently coordinates to Cd2+ ion as a monodentate ligand. While phen in 1 and 2,2′‐bipy in 2 act as N,N‐bidentate chelating ligands, leading to the formation of a discrete mononuclear unit; 4,4′‐bipy in 3 bridges two CdII atoms in bis‐monodentate fashion to produce a 2‐D layered network, suggesting that the conjugate skeleton and the binding site of the co‐ligands have a moderate effect on molecular structure, crystal stacking pattern, and intramolecular weak interactions. In addition, the three complexes exhibit similar luminescent emissions originate from the transitions between the energy levels of sulfonate anions.  相似文献   

3.
The title coordination polymer, poly[[aqua(μ5‐1,1′‐biphenyl‐2,2′,5,5′‐tetracarboxylato)bis[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene]dicadmium(II)] dihydrate], {[Cd2(C16H6O8)(C12H10N4)2(H2O)]·2H2O}n, was crystallized from a mixture of 1,1′‐biphenyl‐2,2′,5,5′‐tetracarboxylic acid (H4bpta), 1,4‐bis(1H‐imidazol‐1‐yl)benzene (1,4‐bib) and cadmium nitrate in water–dimethylformamide. The crystal structure consists of two crystallographically independent CdII cations, with one of the CdII cations possessing a slightly distorted pentagonal bipyramidal geometry. The second CdII centre is coordinated by carboxylate O atoms and imidazole N atoms from two separate 1,4‐bib ligands, displaying a distorted octahedral CdN2O4 geometry. The completely deprotonated bpta4− ligand, exhibiting a new coordination mode, bridges five CdII cations to form one‐dimensional chains viaμ3‐η1212 and μ2‐η1100 modes, and these are further linked by 1,4‐bib ligands to form a three‐dimensional framework with a (42.64)(4.62)(43.65.72) topology. The structure of the coordination polymer is reinforced by intermolecular hydrogen bonding between carboxylate O atoms, aqua ligands and crystallization water molecules. The solid‐state photoluminescence properties were investigated and the complex might be a candidate for a thermally stable and solvent‐resistant blue fluorescent material.  相似文献   

4.
A twofold interpenetrating three‐dimensional CdII coordination framework, [Cd(C8H3NO6)(C14H14N4)]n, has been prepared and characterized by IR spectroscopy, elemental analysis, thermal analysis and single‐crystal X‐ray diffraction. The asymmetric unit consists of a divalent CdII atom, one 1,3‐bis(2‐methyl‐1H‐imidazol‐1‐yl)benzene (1,3‐BMIB) ligand and one fully deprotonated 5‐nitrobenzene‐1,3‐dicarboxylate (NO2‐BDC2−) ligand. The coordination sphere of the CdII atom consists of five O‐donor atoms from three different NO2‐BDC2− ligands and two imidazole N‐donor atoms from two different 1,3‐BMIB ligands, forming a distorted {CdN2O5} pentagonal bipyramid. The NO2‐BDC ligand links three CdII atoms via a μ1‐η11 chelating mode and a μ2‐η21 bridging mode. The title compound is a twofold interpenetrating 3,5‐connected network with the {42.65.83}{42.6} topology. In addition, the compound exhibits fluorescence emissions in the solid state at room temperature.  相似文献   

5.
The CdII three‐dimensional coordination poly[[[μ4‐1,4‐bis(1,2,4‐triazol‐1‐yl)but‐2‐ene]bis(μ3‐5‐carboxybenzene‐1,3‐dicarboxylato)dicadmium(II)] dihydrate], {[Cd2(C9H4O6)2(C8H10N6)]·2H2O}n , (I), has been synthesized by the hydrothermal reaction of Cd(NO3)2·4H2O, benzene‐1,3,5‐tricarboxylic acid (1,3,5‐H3BTC) and 1,4‐bis(1,2,4‐triazol‐1‐yl)but‐2‐ene (1,4‐btbe). The IR spectrum suggests the presence of protonated carboxylic acid, deprotonated carboxylate and triazolyl groups. The purity of the bulk sample was confirmed by elemental analysis and X‐ray powder diffraction. Single‐crystal X‐ray diffraction analysis reveals that the CdII ions adopt a five‐coordinated distorted trigonal–bipyramidal geometry, coordinated by three O atoms from three different 1,3,5‐HBTC2− ligands and two N atoms from two different 1,4‐btbe ligands; the latter are situated on centres of inversion. The CdII centres are bridged by 1,3,5‐HBTC2− and 1,4‐btbe ligands into an overall three‐dimensional framework. When the CdII centres and the tetradentate 1,4‐btbe ligands are regarded as nodes, the three‐dimensional topology can be simplified as a binodal 4,6‐connected network. Thermogravimetric analysis confirms the presence of lattice water in (I). Photoluminescence studies imply that the emission of (I) may be ascribed to intraligand fluorescence.  相似文献   

6.
The one‐ and two‐dimensional polymorphic cadmium polycarboxylate coordination polymers, catena‐poly[bis[μ2‐2‐(2‐methyl‐1H‐benzimidazol‐1‐yl)acetato‐κ3N3:O,O′]cadmium(II)], [Cd(C10H9N2O2)2]n, and poly[bis[μ2‐2‐(2‐methyl‐1H‐benzimidazol‐1‐yl)acetato‐κ3N3:O,O′]cadmium(II)], also [Cd(C10H9N2O2)2]n, were prepared under solvothermal conditions. In each structure, each CdII atom is coordinated by four O atoms and two N atoms from four different ligands. In the former structure, two crystallographically independent CdII atoms are located on twofold symmetry axes and doubly bridged in a μ2N:O,O′‐mode by the ligands into correspondingly independent chains that run in the [100] and [010] directions. Chains containing crystallographically related CdII atoms are linked into sheets viaπ–π stacking interactions. Sheets containing one of the distinct types of CdII atom are stacked perpendicular to [001] and alternate with sheets containing the other type of CdII atom. The second complex is a two‐dimensional homometallic CdII (4,4) net structure in which each CdII atom is singly bridged to four neighbouring CdII atoms by four ligands also acting in a μ2N:O,O′‐mode. A square‐grid network results and the three‐dimensional supramolecular framework is completed by π–π stacking interactions between the aromatic ring systems.  相似文献   

7.
Crystals of poly[[aqua[μ3‐4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylato‐κ5O1O1′:N3,O4:O5][μ4‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylato‐κ7N3,O4:O4,O4′:O1,O1′:O1]cadmium(II)] monohydrate], {[Cd2(C15H14N2O4)(C16H14N2O6)(H2O)]·H2O}n or {[Cd2(Hcpimda)(cpima)(H2O)]·H2O}n, (I), were obtained from 1‐(4‐carboxybenzyl)‐2‐propyl‐1H‐imidazole‐4,5‐dicarboxylic acid (H3cpimda) and cadmium(II) chloride under hydrothermal conditions. The structure indicates that in‐situ decarboxylation of H3cpimda occurred during the synthesis process. The asymmetric unit consists of two Cd2+ centres, one 4‐carboxy‐1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐5‐carboxylate (Hcpimda2−) anion, one 1‐(4‐carboxylatobenzyl)‐2‐propyl‐1H‐imidazole‐4‐carboxylate (cpima2−) anion, one coordinated water molecule and one lattice water molecule. One Cd2+ centre, i.e. Cd1, is hexacoordinated and displays a slightly distorted octahedral CdN2O4 geometry. The other Cd centre, i.e. Cd2, is coordinated by seven O atoms originating from one Hcpimda2− ligand and three cpima2− ligands. This Cd2+ centre can be described as having a distorted capped octahedral coordination geometry. Two carboxylate groups of the benzoate moieties of two cpima2− ligands bridge between Cd2 centres to generate [Cd2O2] units, which are further linked by two cpima2− ligands to produce one‐dimensional (1D) infinite chains based around large 26‐membered rings. Meanwhile, adjacent Cd1 centres are linked by Hcpimda2− ligands to generate 1D zigzag chains. The two types of chains are linked through a μ2‐η2 bidentate bridging mode from an O atom of an imidazole carboxylate unit of cpima2− to give a two‐dimensional (2D) coordination polymer. The simplified 2D net structure can be described as a 3,6‐coordinated net which has a (43)2(46.66.83) topology. Furthermore, the FT–IR spectroscopic properties, photoluminescence properties, powder X‐ray diffraction (PXRD) pattern and thermogravimetric behaviour of the polymer have been investigated.  相似文献   

8.
In the title coordination polymer, [Cd2(SO4)2(C13H8N4)(H2O)2]n, there are two crystallographically independent CdII centres with different coordination geometries. The first CdII centre is hexacoordinated by four O atoms of four sulfate ligands, one water O atom and one N atom of a 1H‐imidazo[4,5‐f][1,10]phenanthroline (IP) ligand, giving a distorted octahedral coordination environment. The second CdII centre is heptacoordinated by four O atoms of three sulfate ligands, one water O atom and two N atoms of one chelating IP ligand, resulting in a distorted monocapped anti‐trigonal prismatic geometry. The symmetry‐independent CdII ions are bridged in an alternating fashion by sulfate ligands, forming one‐dimensional ladder‐like chains which are connected through the IP ligands to form two‐dimensional layers. These two‐dimensional layers are linked by interlayer hydrogen bonds, leading to the formation of a three‐dimensional supramolecular network.  相似文献   

9.
The N‐heterocyclic ligand 2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole (imb) has a rich variety of coordination modes and can lead to polymers with intriguing structures and interesting properties. In the coordination polymer catena‐poly[[cadmium(II)‐bis[μ‐benzene‐1,2‐dicarboxylato‐κ4O1,O1′:O2,O2′]‐cadmium(II)‐bis{μ‐2‐[(1H‐imidazol‐1‐yl)methyl]‐1H‐benzimidazole}‐κ2N2:N32N3:N2] dimethylformamide disolvate], {[Cd(C8H4O4)(C11H10N4)]·C3H7NO}n, (I), each CdII ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from two symmetry‐related benzene‐1,2‐dicarboxylate (1,2‐bdic2−) ligands and two N atoms from two symmetry‐related imb ligands. Two CdII ions are connected by two benzene‐1,2‐dicarboxylate ligands to generate a binuclear [Cd2(1,2‐bdic)2] unit. The binuclear units are further connected into a one‐dimensional chain by pairs of bridging imb ligands. These one‐dimensional chains are further connected through N—H…O hydrogen bonds and π–π interactions, leading to a two‐dimensional layered structure. The dimethylformamide solvent molecules are organized in dimeric pairs via weak interactions. In addition, the title polymer exhibits good fluorescence properties in the solid state at room temperature.  相似文献   

10.
The title compound, [Cd3(C8H10O4)3(C12H9N3)2(H2O)2]n or [Cd3(chdc)3(4‐PyBIm)2(H2O)2]n, was synthesized hydrothermally from the reaction of Cd(CH3COO)2·2H2O with 2‐(pyridin‐4‐yl)‐1H‐benzimidazole (4‐PyBIm) and cyclohexane‐1,4‐dicarboxylic acid (1,4‐chdcH2). The asymmetric unit consists of one and a half CdII cations, one 4‐PyBIm ligand, one and a half 1,4‐chdc2− ligands and one coordinated water molecule. The central CdII cation, located on an inversion centre, is coordinated by six carboxylate O atoms from six 1,4‐chdc2− ligands to complete an elongated octahedral coordination geometry. The two terminal rotationally symmetric CdII cations each exhibits a distorted pentagonal–bipyramidal geometry, coordinated by one N atom from 4‐PyBIm, five O atoms from three 1,4‐chdc2− ligands and one O atom from an aqua ligand. The 1,4‐chdc2− ligands possess two conformations, i.e.e,etrans‐chdc2− and e,acis‐chdc2−. The cis‐1,4‐chdc2− ligands bridge the CdII cations to form a trinuclear {Cd3}‐based chain along the b axis, while the trans‐1,4‐chdc2− ligands further link adjacent one‐dimensional chains to construct an interesting two‐dimensional network.  相似文献   

11.
The bromo‐substituted aromatic dicarboxylic acid 5‐amino‐2,4,6‐tribromoisophthalic acid (H2ATBIP) was used to assemble with CdII ions in the presence of the N‐donor flexible bipyridyl ligands 3,3′‐(diazene‐1,2‐diyl)dipyridine (mzpy) and 1,3‐bis(pyridin‐3‐ylmethyl)urea (3bpmu), leading to the formation of two chain coordination polymers by adopting solution methods, namely, catena‐poly[[[triaqua(5‐amino‐2,4,6‐tribromoisophthalato‐κO)cadmium(II)]‐μ‐3,3′‐(diazene‐1,2‐diyl)dipyridine‐κ2N1:N1′] dihydrate], {[Cd(C8H2Br3NO4)(C10H8N4)(H2O)3]·2H2O}n or {[Cd(ATBIP)(mzpy)(H2O)3]·2H2O}n, ( 1 ), and catena‐poly[[[tetraaquacadmium(II)]‐μ‐1,3‐bis(pyridin‐3‐ylmethyl)urea‐κ2N1:N1′‐[diaquabis(5‐amino‐2,4,6‐tribromoisophthalato‐κO)cadmium(II)]‐μ‐1,3‐bis(pyridin‐3‐ylmethyl)urea‐κ2N1:N1′] octahydrate], {[Cd(C8H2Br3NO4)(C12H12N4O)(H2O)3]·4H2O}n or {[Cd(ATBIP)(3bpmu)(H2O)3]·4H2O}n, ( 2 ). Both complexes were characterized by FT–IR spectroscopic analysis, thermogravimetric analysis (TGA), solid‐state diffuse reflectance UV–Vis spectroscopic analysis, and single‐crystal and powder X‐ray diffraction analysis (PXRD). The mzpy and 3bpmu ligands bridge the CdII metal centres in ( 1 ) and ( 2 ) into one‐dimensional chains, and the ATBIP2− ligands show a monodentate coordination to the CdII centres in both coordination polymers. A discrete water tetramer exists in ( 1 ). Within the chains of ( 1 ) and ( 2 ), there are halogen bonds between adjacent ATBIP2− and mzpy or 3bpmu ligands, as well as hydrogen bonds between the ATBIP2− ligands and the coordinated water molecules. With the aid of weak interactions, the structures of ( 1 ) and ( 2 ) are further extended into three‐dimensional supramolecular networks. An analysis of the solid‐state diffuse reflectance UV–Vis spectra of ( 1 ) and ( 2 ) indicates that a wide indirect band gap exists in both complexes. Complexes ( 1 ) and ( 2 ) exhibit irreversible and reversible dehydration–rehydration behaviours, respectively, and the solid‐state fluorescence properties of both complexes have been studied.  相似文献   

12.
Three 1‐methyl‐4,4′‐bipyridinium (MQ+)‐based complexes, {[Cd(MQ)(p‐BDC)Br]?H2O}n ( 1 ), {[Cd(MQ)(m‐BDC)(H2O)Br]?3H2O}n ( 2 ) and Cu(MQ)Br2 ( 3 ) (p‐H2BDC = 1,4‐benzenedicarboxylic acid, m‐H2BDC = 1,3‐benzenedicarboxylic acid), have been synthesized and structurally characterized. Compounds 1 and 2 are one‐dimensional coordination polymers constituted of one coordinated MQ+ cation, one coordinated Br? ion and chains of Cd2+ ions connected by deprotonated BDC2? units, which both have photochromism but different decolorization behaviors. The structures and photoresponsive behaviors controlled by auxiliary ligands have been explored. Compound 3 is constituted of one Cu+ center, one MQ+ ligand and two coordinated Br? ions in a ‘V’ configuration, exhibiting no photochromism.  相似文献   

13.
The effects of axial ligands on electron‐transfer and proton‐coupled electron‐transfer reactions of mononuclear nonheme oxoiron(IV) complexes were investigated by using [FeIV(O)(tmc)(X)]n+ ( 1 ‐X) with various axial ligands, in which tmc is 1,4,8,11‐tetramethyl‐1,4,8,11‐tetraazacyclotetradecane and X is CH3CN ( 1 ‐NCCH3), CF3COO? ( 1 ‐OOCCF3), or N3? ( 1 ‐N3), and ferrocene derivatives as electron donors. As the binding strength of the axial ligands increases, the one‐electron reduction potentials of 1 ‐X (Ered, V vs. saturated calomel electrode (SCE)) are more negatively shifted by the binding of the more electron‐donating axial ligands in the order of 1 ‐NCCH3 (0.39) > 1 ‐OOCCF3 (0.13) > 1 ‐N3 (?0.05 V). Rate constants of electron transfer from ferrocene derivatives to 1 ‐X were analyzed in light of the Marcus theory of electron transfer to determine reorganization energies (λ) of electron transfer. The λ values decrease in the order of 1 ‐NCCH3 (2.37) > 1 ‐OOCCF3 (2.12) > 1 ‐N3 (1.97 eV). Thus, the electron‐transfer reduction becomes less favorable thermodynamically but more favorable kinetically with increasing donor ability of the axial ligands. The net effect of the axial ligands is the deceleration of the electron‐transfer rate in the order of 1 ‐NCCH3 > 1 ‐OOCCF3 > 1 ‐N3. In sharp contrast to this, the rates of the proton‐coupled electron‐transfer reactions of 1 ‐X are markedly accelerated in the presence of an acid in the opposite order: 1 ‐NCCH3 < 1 ‐OOCCF3 < 1 ‐N3. Such contrasting effects of the axial ligands on the electron‐transfer and proton‐coupled electron‐transfer reactions of nonheme oxoiron(IV) complexes are discussed in light of the counterintuitive reactivity patterns observed in the oxo transfer and hydrogen‐atom abstraction reactions by nonheme oxoiron(IV) complexes (Sastri et al. Proc. Natl. Acad. Sci. U.S.A. 2007 , 104, 19 181–19 186).  相似文献   

14.
The title compound, (C24H24N7)2[Cd5Cl16(H2O)4]·H2O, contains a [Cd5Cl16(H2O)4]6− anion, two triply protonated tris[(1H‐benzimidazol‐3‐ium‐2‐yl)methyl]amine cations and one solvent water molecule. The structure of the anion is a novel chloride‐bridged pentanuclear cluster. The five unique CdII centres have quite different coordination environments. Two of the central hexacoordinated CdII cations have a CdOCl5 chromophore, in which each CdII cation is ligated by four bridging chloride ligands, one terminal chloride ligand and one water molecule, adopting a distorted octahedral environment. The third central CdII cation is octahedrally coordinated by four bridging chloride ligands and two water molecules. Finally, the two terminal CdII cations are pentacoordinated by two bridging and three terminal chloride ligands and adopt a trigonal–bipyramidal geometry. A three‐dimensional supramolecular network is formed through intra‐ and intermolecular O—H...O, O—H...Cl, N—H...Cl and N—H...O hydrogen bonds and π–π interactions between the cations and anions.<!?tpb=20.6pt>  相似文献   

15.
The combination of N‐heterocyclic and multicarboxylate ligands is a good choice for the construction of metal–organic frameworks. In the title coordination polymer, poly[bis{μ2‐1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole‐κ2N3:N4}(μ4‐butanedioato‐κ4O1:O1′:O4:O4′)(μ2‐butanedioato‐κ2O1:O4)dicadmium], [Cd(C4H4O4)(C9H8N6)]n, each CdII ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from three carboxylate groups of three succinate (butanedioate) ligands and two N atoms from two 1‐[(1H‐benzimidazol‐2‐yl)methyl]‐1H‐tetrazole (bimt) ligands. CdII ions are connected by two kinds of crystallographically independent succinate ligands to generate a two‐dimensional layered structure with bimt ligands located on each side of the layer. Adjacent layers are further connected by hydrogen bonding, leading to a three‐dimensional supramolecular architecture in the solid state. Thermogravimetric analysis of the title polymer shows that it is stable up to 529 K and then loses weight from 529 to 918 K, corresponding to the decomposition of the bimt ligands and succinate groups. The polymer exhibits a strong fluorescence emission in the solid state at room temperature.  相似文献   

16.
Using polynuclear metal clusters as nodes, many high‐symmetry high‐connectivity nets, like 8‐connnected bcu and 12‐connected fcu , have been attained in metal–organic frameworks (MOFs). However, construction of low‐symmetry high‐connected MOFs with a novel topology still remains a big challenge. For example, a uninodal 8‐connected lsz network, observed in inorganic ZrSiO4, has not been topologically identified in MOFs. Using 2,2′‐difluorobiphenyl‐4,4′‐dicarboxylic acid (H2L) as a new linker and 1,2,4‐triazole (Htrz) as a coligand, a novel three‐dimensional CdII–MOF, namely poly[tetrakis(μ4‐2,2′‐difluorobiphenyl‐4,4′‐dicarboxylato‐κ5O1,O1′:O1′:O4:O4′)tetrakis(N,N‐dimethylformamide‐κO)tetrakis(μ3‐1,2,4‐triazolato‐κ3N1:N2:N4)hexacadmium(II)], [Cd6(C14H6F2O4)4(C2H2N3)4(C3H7NO)4]n, (I), has been prepared. Single‐crystal structure analysis indicates that six different CdII ions co‐exist in (I) and each CdII ion displays a distorted [CdO4N2] octahedral geometry with four equatorial O atoms and two axial N atoms. Three CdII ions are connected by four carboxylate groups and four trz ligands to form a linear trinuclear [Cd3(COO)4(trz)4] cluster, as do the other three CdII ions. Two Cd3 clusters are linked by trz ligands in a μ1,2,4‐bridging mode to produce a two‐dimensional CdII–triazolate layer with (6,3) topology in the ab plane. These two‐dimensional layers are further pillared by the L2− ligands along the c axis to generate a complicated three‐dimensional framework. Topologically, regarding the Cd3 cluster as an 8‐connected node, the whole architecture of (I) is a uninodal 8‐connected lsz framework with the Schläfli symbol (422·66). Complex (I) was further characterized by elemental analysis, IR spectroscopy, powder X‐ray diffraction, thermogravimetric analysis and a photoluminescence study. MOF (I) has a high thermal and water stability.  相似文献   

17.
The title CdII compound, {[Cd2(C13H7NO4)2(H2O)4]·5H2O}n, was synthesized by the hydrothermal reaction of Cd(NO3)2·4H2O and 5‐(pyridin‐4‐yl)isophthalic acid (H2L). The asymmetric unit contains two crystallographically independent CdII cations, two deprotonated L2− ligands, four coordinated water molecules and five isolated water molecules. One of the CdII cations adopts a six‐coordinate octahedral coordination geometry involving three O atoms from one bidentate chelating and one monodentate carboxylate group of two different L2− ligands, one N atom of another L2− ligand and two coordinated water molecules. The second CdII cation adopts a seven‐coordinate pentagonal–bipyramidal coordination geometry involving four O atoms from two bidentate chelating carboxylate groups of two different L2− ligands, one N atom of another L2− ligand and two coordinated water molecules. Each L2− ligand bridges three CdII cations and, likewise, each CdII cation connects to three L2− ligands, giving rise to a two‐dimensional graphite‐like 63 layer structure. These two‐dimensional layers are further linked by O—H...O hydrogen‐bonding interactions to form a three‐dimensional supramolecular architecture. The photoluminescence properties of the title compound were also investigated.  相似文献   

18.
In the construction of coordination polymers, many factors can influence the formation of the final architectures, such as the nature of the metal centres, the organic ligands and the counter‐anions. In the coordination polymer poly[aqua(μ‐benzene‐1,2‐dicarboxylato‐κ4O 1,O 1′:O 2,O 2′)[μ‐2‐(1H‐imidazol‐1‐ylmethyl)‐6‐methyl‐1H‐benzimidazole‐κ2N 2:N 3]cadmium(II)], [Cd(C12H12N4)(C8H4O4)(H2O)]n or [Cd(immb)(1,2‐bdic)(H2O)]n , each CdII ion is seven‐coordinated by two N atoms from two symmetry‐related 2‐(1H‐imidazol‐1‐ylmethyl)‐6‐methyl‐1H‐benzimidazole (immb) ligands, by four O atoms from two symmetry‐related benzene‐1,2‐dicarboxylate (1,2‐bdic2−) ligands and by one water molecule, leading to a CdN2O5 distorted pentagonal bipyramidal coordination environment. The immb and 1,2‐bdic2− ligands bridge CdII ions and form a two‐dimensional network structure. O—H…O and N—H…O hydrogen bonds stabilize the structure. In addition, the IR spectroscopic properties, PXRD patterns, thermogravimetric behaviour and fluorescence properties of the title polymer have been investigated.  相似文献   

19.
Bifunctional organic ligands are very popular for the design of coordination polymers because they allow the formation of a great diversity of structures. In the title coordination polymer, the new bifunctional inversion‐symmetric ligand 2,5‐bis(1H‐1,2,4‐triazol‐1‐yl)terephthalic acid (abbreviated as H2bttpa) links CdII cations, giving rise to the three‐dimensional CdII coordination polymer catena‐poly[diaqua[μ4‐2,5‐bis(1H‐1,2,4‐triazol‐1‐yl)terephthalato‐κ4O1:O4:N4:N4′]cadmium(II)], [Cd(C12H6N6O4)(H2O)2]n or [Cd(bttpa)(H2O)2]n. The asymmetric unit consists of half a CdII cation, half a bttpa2− ligand and one coordinated water molecule. The CdII cation is located on a twofold axis and is hexacoordinated in a distorted octahedral environment of four O and two N atoms. Four different bttpa2− ligands contribute to this coordination, with two carboxylate O atoms in trans positions and two triazole N atoms in cis positions. Two aqua ligands in cis positions complete the coordination sphere. The fully deprotonated bttpa2− ligand sits about a crystallographic centre of inversion and links two CdII cations to form a chain in a μ2‐terephthalato‐κ2O1:O4 bridge. This chain extends in the other two directions via the triazole heterocycles, producing a three‐dimensional framework. O—H…O hydrogen bonds and weak C—H…N interactions stabilize the three‐dimensional crystal structure. The FT–IR spectrum, X‐ray powder pattern, thermogravimetric behaviour and solid‐state photoluminescence of the title polymer have been investigated. The photoluminescence is enhanced and red‐shifted with respect to the uncoordinated ligand.  相似文献   

20.
A new cadmium–thiocyanate complex, namely catena‐poly[1‐carboxymethyl‐4‐(dimethylamino)pyridinium [cadmium(II)‐tri‐μ‐thiocyanato‐κ4N:S2S:N] [[[4‐(dimethylamino)pyridinium‐1‐acetate‐κ2O,O′]cadmium(II)]‐di‐μ‐thiocyanato‐κ2N:S2S:N]], {(C9H13N2O2)[Cd(NCS)3][Cd(NCS)2(C9H12N2O2)]}n, was synthesized by the reaction of 4‐(dimethylamino)pyridinium‐1‐acetate, cadmium nitrate tetrahydrate and potassium thiocyanide in aqueous solution. In the crystal structure, two types of CdII atoms are observed in distorted octahedral coordination environments. One type of CdII atom is coordinated by two O atoms from the carboxylate group of the 4‐(dimethylamino)pyridinium‐1‐acetate ligand and by two N atoms and two S atoms from four different thiocyanate ligands, while the second type of CdII atom is coordinated by three N atoms and three S atoms from six different thiocyanate ligands. Neighbouring CdII atoms are linked by thiocyanate bridges to form a one‐dimensional zigzag chain and a one‐dimensional coordination polymer. Hydrogen‐bond interactions are involved in the formation of the supramolecular network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号