首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
《Analytical letters》2012,45(16):3060-3069
Abstract

Hemin, iron (III) protoporphyrin IX chloride, in NH3‐NH4Cl buffer solution of pH 9.5 produces an insensitive reduction wave at about ?0.70 V (vs. saturated calomel reference electrode, SCE) by using single sweep polarography. Adding oxidant K2S2O8 to the solution, hemin reduction wave is catalyzed, yielding a parallel catalytic wave. The catalytic current is 20 times of hemin original reduction current. The derivative peak height is linearly proportional to the hemin concentration in the range of 7.5×10?8 to 4.5×10?6 mol/l, the detection limit is 5.0×10?8 mol/l. Serum albumin, common amino acids, and metal ions have no interference with the hemin determination. The proposed method has been applied to the determination of hemin content in oral liquid samples with satisfactory results. The parallel catalytic wave is attributed to the catalytic reduction of porphyrin ring of hemin at the dropping mercury electrode. The new method could be useful in biochemical, clinical, and pharmaceutical analysis.  相似文献   

2.
A simple and novel flow‐injection chemiluminescence (FI‐CL) method was established for the determination of 2‐Methoxyestradiol (2‐ME) in pharmaceutical preparations and biological fluids. The method was based on the significant enhancement of the CL from the KMnO4‐Na2SO3 reaction by 2‐ME in acidic medium. Under optimized conditions, the CL intensity was correlated linearly with concentration of 2‐ME in the range of 5.0 × 10?8‐5.0 × 10?6 M (r = 0.9995). The detection limit (3σ) of 2‐ME was 7.5 × 10?9 M and the relative standard deviation was 0.8% at 5.0 × 10?7 M 2‐ME (n = 8). The proposed method was successfully applied for the flow‐injection CL determination of 2‐ME in pharmaceutical preparations and biological fluids with the recoveries from 92.4 to 106.8%. The possible CL reaction mechanism was also discussed briefly.  相似文献   

3.
《Analytical letters》2012,45(16):3148-3157
Abstract

A simple, rapid, and automated assay for hydrogen peroxide in pharmaceutical samples was developed by combining the multicommutation system with a chemiluminescence (CL) detector. The detection was performed using a spiral flow‐cell reactor made from polyethylene tubing that was positioned in front of a photodiode. It allows the rapid mixing of CL reagent and analyte and simultaneous detection of the emitted light. The chemiluminescence was based on the reaction of luminol with hydrogen peroxide catalyzed by hexacyanoferrate(III).

The feasibility of the flow system was ascertained by analyzing a set of pharmaceutical samples. A linear response within the range of 2.2–210 µmol l?1 H2O2 with a LD of 1.8 µmol l?1 H2O2 and coefficient of variations smaller than 0.8% for 1.0×10?5 mol l?1 and 6.8×10?5 mol l?1 hydrogen peroxide solutions (n=10) were obtained. Reagents consumption of 90 µg of luminol and 0.7 mg of hexacyanoferrate(III) per determination and sampling rate of 200 samples per hour were also achieved.  相似文献   

4.
In this work, cerium oxide nanoparticles are capable of strongly enhancing the chemiluminescence (CL) of the luminol–hydrogen peroxide (H2O2) system. Based on this, a microarray CL method for the determination of the removal rate constant of H2O2 by human erythrocytes has been developed. It is providing direct evidence for a H2O2-removing enzyme in human erythrocytes that acts as the predominant catalyst. A reaction mechanism is discussed. The proposed microarray CL method is sensitive, selective, simple and time-saving, and has good reproducibility and high throughput. Relative CL intensity is linearly related to the concentration of H2O2 in the range from 0.01 to 50 μM. The limit of detection is as low as 6.5?×?10?11 M (3σ), and the relative standard deviation is 2. 1 % at 1 μM levels of H2O2 (for n?=?11).  相似文献   

5.
《Analytical letters》2012,45(15):3271-3283
ABSTRACT

Six kinds of water-soluble porphyrin were examined as a sensitizer (fluorophore) in the bis(2,4,6-trichlorophenyl)oxalate(TCPO)-hydrogen peroxide (H2O2) chemiluminescence(CL) system. Among them, coproporphyrin III showed the highest CL intensity. Moreover, the TCPO-H2O2-coproporphyrin III CL system was separately examined in each micelle solution using a non-ionic surfactant such as Briji 35 and Triton X-100, and an ionic surfactant such as cetyltrimethylammonium chloride(CTAC) and sodium dodecylsulfate. As a result, the CL intensity along with the coexistence of the CTAC micelle increased approximately 36 times compared to that in the absence of surfactant. Based on these findings, the quenching CL determination of copper(II) was established using the complex formation of coproporphyrin III and copper(II) ion. The calibration graph for the concentration of copper(II) was linear in the range of 2×10?8M to 1×10?6M, and the detection limit(3σ) was 1.26×10?8M. Moreover, the relative standard deviation was 2.9%(10 determinations). The proposed method was applied to the determination of copper(II) ion in waste water and satisfactory results were obtained.  相似文献   

6.
《Analytical letters》2012,45(14):2883-2899
ABSTRACT|The catalytic activity of various mimetic enzymes instead of the peroxidase have been investigated by 4-aminoantipyrine (4-AAP) and 2, 3, 4-trichlorophenol (TCP) to form a dye utilizing hydrogen peroxide as hydrogen acceptor. The different Chlorophenolic derivatives, which act as a substrate in β-CD-hemin-H2O2-4-AAP catalytic reaction, have been systematically studied.|Meanwhile, the relationship of structure-effect for the β-CD-hemin as catalyst, and chlorphenols as substrate has been respectively discussed. The mechanism of catalytic reaction has been investigated. The results showed that β-CD-hemin was the best mimetic enzyme for peroxidase among those tested and TCP was a good substrate for the determination of hydrogen peroxide with β-CD-hemin. The method for the determination of hydrogen peroxide was proposed using 4-AAP-TCP system with β-CD-hemin as catalyst. A linear calibration graph was obtained over the H2O2 concentration of 4.8×10-?8-7.7×10-?5M, and the relative standard deviation at a H2O2 concentration of 2.8×10-?5M was 2.5%. The apparent molar absorptivity of the chromogenic reaction for H2O2 was 1.54× 104 L.mol-?1.cm?1. Satisfactory results were obtained in the determination of H2O2 in synthetic samples by this method.

Also, the method was coupled with the glucose oxidation reaction to determination glucose in human serum.  相似文献   

7.
A hemin bulk modified carbon electrode with Adeps neutralis (solid fat) as binder was developed for the determination of antimalarial endoperoxide artemisinin in plant matrix. The hemin modified electrode showed significant catalytic activity for the electrochemical reduction of artemisinin at about ?380 mV vs. Ag/AgCl in phosphate buffer solution of pH 7 by using cyclic and differential pulse voltammetry. Under optimized conditions strict linearity between artemisinin concentration and height of the cathodic catalytic current peak was observed in 4.8×10?6–7.8×10?5 M concentration range (R=0.9991) when using differential pulse voltammetry. The detection limit was calculated as 1.4×10?6 M of artemisinin. The developed electroanalytical device is suitable for the determination of artemisinin in Artemisia annua extracts.  相似文献   

8.
This work presents a new chemiluminescent (CL) probe array assay. The new type CL probe array is based on enzyme mimics of Co3O4–SiO2 mesoporous nanocomposite material, which not only have an excellent catalytic effect on the luminol–H2O2 CL reaction in an alkaline medium but also can be used for the immobilization of enzymes. The linear range of the lactose concentration is 3.0?×?10?7 to 1.0?×?10?5 g mL?1 and the detection limit is 6.9?×?10?8 g mL?1. β-Galactosidase and glucose oxidase were selected as a model for enzyme assays to demonstrate the applicability of Co3O4–SiO2 mesoporous nanocomposite material in multienzyme immobilization. The novel bifunctional CL probe array has been successfully applied to the determination of lactose in milk.  相似文献   

9.
A novel chemiluminescence (CL) method was established for two anticancer drugs, adriamycin (ADM) and mitomycin (MMC), based on potassium permanganate oxidation in the presence of formaldehyde. The sensitized CL emission mechanism was developed by comparing the fluorescence emission with CL spectra. Illuminant was the singlet state bi-molecule oxygen, 1O2 1O2 (1Δg 1Δg), from 1O2 (1Δg) which was produced in the reaction system, and emitted CL spectra at 639 nm or 649 nm. The presence of formaldehyde may accelerate the generation of 1O2 (1Δg) and sensitized CL emission. The optimum conditions for CL emission were investigated and optimized. The relationships between the relative CL intensity and the concentration of the studied analytes found to be linear. The detection limit was 3 × 10?8 g ml?1 for ADM and 3 × 10?9 g ml?1 for MMC. The relative standard deviations are 2.2% and 1.8% for determinations of ADM at 2.0 × 10?6 g ml?1 and MMC at 2.0 × 10?7 g ml?1, respectively. The proposed sensitized CL system was successfully applied to the determination of ADM and MMC in their injections with satisfactory results.  相似文献   

10.
In the present work, a novel flow-injection chemiluminescence method based on CdTe quantum dots (QDs) was developed for the determination of nitrite. Weak chemiluminescence (CL) signals were observed from a CdTe QDs–H2O2 system under basic conditions. The addition of a trace amount of hemoglobin (Hb) caused the CL from the CdTe QDs–H2O2 system to increase substantially. In the presence of nitrite, the ferrous Hb reacted with the nitrate to form ferric Hb and NO. The NO then bound to ferrous Hb to generate iron nitrosyl Hb. As a result, the CL signal from the CdTe QDs–H2O2–Hb system was quenched. Thus, a flow-injection CL analytical system for the determination of trace nitrite was established. Under optimum conditions, there was a good linear relationship between CL intensity and the concentration of nitrite in the range 1.0?×?10?9 to 8.0?×?10?7 mol L?1 (R 2?=?0.9957). The limit of detection for nitrite using this system was 3.0?×?10?10 mol L?1 (S/N?=?3). This method was successfully applied to detect nitrite in water samples.
Figure
The scheme of the mechanism of the CL system  相似文献   

11.
A novel chemiluminescence (CL) method for the determination of hydrogen peroxide is described. Method is based on the transition metals in highest oxidation state complex, which include diperiodatoargentate (DPA) and diperiodatonickelate (DPN) and show excellent sensitisation on the luminol-H2O2 CL reaction with low luminol concentration in alkaline medium. In particular, the sensitiser which was previously reported (such as Co2+, Cu2+, Ni2+, Mn2+, Fe3+, Cr3+, KIO4, K3Fe(CN)6 etc.) to be unobserved CL due to poor sensitisation with such low concentration of luminol which makes the method hold high selectivity. Based on this observation, the detection limits were 6.5?×?10?9?mol?L?1 and 1.1?×?10?8?mol?L?1 hydrogen peroxide for the DPN- and DPA-luminol CL systems, respectively. The relative CL intensity was linear with the hydrogen peroxide concentration in the range of 2.0?×?10?8–6.0?×?10?6?mol?L?1 and 4.0?×?10?8–4.0?×?10?6?mol?L?1 for the DPN- and DPA-luminol CL systems, respectively. The proposed method had good reproducibility with a relative standard deviation of 3.4% (8.0?×?10?7?mol?L?1, n?=?7) and 1.0% (2.0?×?10?6?mol?L?1, n?=?7) for the DPN- and DPA-luminol CL systems, respectively. A satisfactory result has been gained for the determination of H2O2 in rainwater and artificial lake water by use of the proposed method.  相似文献   

12.
A highly sensitive automated sequential‐injection chemiluminescence (SIA‐CL) method for determination of glucosamine sulphate (GLS) was developed. The goal of the present work is the evaluation of the enhancement effect of the investigated drug glucosamine sulphate on the chemiluminescence reaction between luminol and H2O2 in alkaline medium of 1.0 × 10?2 mol L?1 sodium hydroxide at pH 11. The experimental conditions affecting the CL reaction such as the sequence of the reagents, concentrations, flow rate and aspirated volumes of reactants were systematically investigated and optimized. Under optimum conditions 50 μL of 1.0 × 10?3 mol L?1 luminol, 30 μL of a GLS test solution and 50 μL of 1.0 × 10?2 mol L?1 H2O2 were used and the luminescing zone was pushed into the detector at a flow rate 100 μL s?1. The proposed method recorded high sensitivity, accuracy and simplicity that could be clarified as linear concentration range 1.0‐2000 ng mL?1 with rectilinear part (r = 0.9992, n = 9) and limit of detection 0.3 ng mL?1, along with relative standard deviation 1.3%. It was found that the developed method can be used directly to determine the investigated drug GLS in its pharmaceutical dosage forms and in spiked serum and urine by diluting the samples for a 1000 fold. The obtained results were statistically analyzed and compared with those obtained by the reported method.  相似文献   

13.
《Analytical letters》2012,45(5):973-983
Abstract

A rapid and sensitive flow‐injection chemiluminescence (FI‐CL) method, which is based on the CL intensity that generated from the redox reaction of Ce(IV)‐rhodamine B in H2SO4 medium, for the determination of acyclovir and gancyclovir is described. For acyclovir, the determination range is 3×10?8 g mL?1–7×10?5 g mL?1, with 1.56×10?8 g mL?1 as its determination limit. During 11 repeated measurements for 1×10?6 g mL?1 acyclovir, the relative standard deviation was 2.08%. For gancyclovir, the determination range was 5×10?8 g mL?1–7×10?5 g mL?1, with 2.35×10?8 g mL?1 as its determination limit. The relative standard deviation is 2.83% with 11 repeated measurements of 1×10?6 g mL?1 gancyclovir. This method can be successfully used to determine the content of acyclovir and gancyclovir in injections, acyclovir in eye drops, and, maybe, also for other ciclovirs.  相似文献   

14.
Based on hemin‐MWCNTs nanocomposite and hemin‐catalyzed luminol‐H2O2 reaction, a sensitive electrogenerated chemiluminescence (ECL) cholesterol biosensor was proposed in this paper. Firstly, hemin‐MWCNTs was prepared via π–π stacking and modified on the surface of GCE. Subsequently, cholesterol oxidase (ChOx) was adsorbed on the modified electrode to achieve a cholesterol biosensor. Hemin‐MWCNTs nanocomposite provided the electrode with a large surface area to load ChOx, and endowed the nanostructured interface on the electrode surface to enhance the performance of biosensor. The biosensor responded to cholesterol in the linear range from 0.3 µM to 1.2 mM with a detection limit of 0.1 µM (S/N=3).  相似文献   

15.
《Analytical letters》2012,45(15):2935-2945
Abstract

A novel chemiluminescence (CL) reaction between hydroxyl radical and ascorbic acid is described in this paper. Hydroxyl radical generated on line by the reaction between Fe3+ solution and H2O2 solution in HCl medium could oxidize rhodamine 6G to produce weak chemiluminescence. It was found that ascorbic acid could enhance the chemiluminescence and the excited rhodamine 6G was the emitter of the chemiluminescence reaction. The possible mechanism of the CL system was also discussed. Ascorbic acid can be determined in the range of 2.0×10?6?8.0×10?4 mg/ml with a detection limit of 1×10?6 mg/ml (3σ). A complete analysis could be done in 1 minute with the relative standard deviation of 3.1% for 5.0×10?5 mg/ml (n=11). In order to study the chemiluminescence reaction further, the application to the determination of ascorbic acid in food using the chemiluminescence reaction combined with flow injection is investigated.  相似文献   

16.
We developed a novel iron‐tetrasulfophthalocyanine‐graphene‐Nafion (FeTSPc‐GR‐Nafion) modified screen‐printed electrode to determine hydrogen peroxide (H2O2) with high sensitivity and selectivity. The nanocomposite film (FeTSPc‐GR‐Nafion) exhibits an excellent electrocatalytic activity towards oxidation of H2O2 at a potential of +0.35 V in the absence of enzyme. A comparative study reveals that the FeTSPc‐GR complexes play a dual amplification role. Amperometric experiment indicates that the sensors possess good sensitivity and selectivity, with a linear range from 2.0×10?7 M to 5.0×10?3 M and a detection limit of 8.0×10?8 M. This sensor has been successfully used to develop the glucose biosensor and has also been applied to determine H2O2 in sterile water.  相似文献   

17.
A chemiluminescence (CL) phenomenon was observed when gossypol was injected into a reaction mixture of N‐bromosuccinimide (NBS) and alkaline dichlorofluorescein (DCF). Based on this phenomenon, a rapid and sensitive method for the determination of gossypol was established. Under the optimum conditions, the linear range was from 1.0 × 10?9 to 1.0 × 10?6 M. The detection limit was 1.0 × 10?10 M. The method has been applied to the determination of gossypol in cottonseed, cottonseed oil, pharmaceutical and biological fluids with satisfactory results. The possible CL reaction mechanism was discussed briefly.  相似文献   

18.
In an ammonium buffer medium at pH 8.9–9.5, hemin exhibits mimetic peroxidase activity, and has a catalytic effect on the oxidative decoloration of bromopyrogallol red (BPR) with hydrogen peroxide. On this basis and in presence of ethanol as an effect-enhancing agent, a spectrophotometric determination of hydrogen peroxide is described with an apparent molar absorptivity of 4.00×104?l?mol?1?cm?1 and a linear range from 3.2×10?7 to 3.2×10?5?mol?l?1. BPR has advantages over some of widely used chromogenic substrates in aspects of sensitivity, simplicity and detection wavelength, while hemin has better stability than peroxidase. The system can be easily coupled with a glucose oxidase-catalyzed reaction, and glucose in the concentration range of 6.0×10?7? 3.2×10?5?mol?l?1 is spectrophotometrically determined. The method has been applied to the analyses of synthetic water and human serum samples. The Michaelis parameters and the mechanism of the mimetic peroxidase reaction are also investigated.  相似文献   

19.
A highly sensitive and simple spectrofluorimetric method for the determination of reduced glutathione based on the fluorescence quenching effect of glutathione on the hemoglobin-catalyzed reaction of H2O2 with L-tyrosine was developed. The concentration of glutathione is linear with the fluorescence quenching (??F) of system under the optimal experimental conditions. The calibration graph is linear in the range 6.25 × 10?9 to 3.75 × 10?6 M with the detection limit of 2.23 × 10?9 M. This method can be used for the determination of glutathione in vegetables with satisfactory results.  相似文献   

20.
A newly nonenzymatic sensor for hydrogen peroxide (H2O2) based on the (Au‐HS/SO3H‐PMO (Et)) nanocomposite is demonstrated. The electrochemical properties of the as‐prepared nanocomposite were studied. It displayed an excellent performance towards H2O2 sensing in the linear response range from 0.20 µM to 4.30 mM (R=0.9999) with a sensitivity of 6.35×102 µA µM?1 cm?2 and a low detection limit of 0.0499 µM. Furthermore, it was not affected by electroactive interference species. These features proved that the modified electrode was suitable for determination of H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号