首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Azobenzene‐functionalized polythiophene derivatives, Poly[4‐((4‐(phenyl)azo)phenoxy)alkyl‐3‐thienylacetate] (alkyl=hexyl and octyl) (P6 and P8) and the copolymers of 3‐hexylthiophene and 4‐((4‐(phenyl)azo)phenoxy)alkyl‐3‐thienylacetate (alkyl=hexyl and octyl) (P66 and P86) were synthesized. The composition, structure, and thermal property of these polythiophene derivatives were fully characterized by NMR, FTIR, GPC, MDSC, and XRD. The structural dependence of the photochromic features and thermochromic behaviors were also investigated by means of photoluminescence and UV‐Vis absorption spectroscopy. The results have shown that the azobenzene substitution renders the homopolymer (P6 and P8) some interesting optical properties that can be modulated by UV light irradiation. In these azobenzene‐modified polythiophenes, the intensity of photoluminescent emission associated with the conjugated polythiophene main chain was found to decrease significantly upon UV irradiation. The finding suggests that the photo‐induced trans–cis isomerization of the azobenzene pendant groups has significant effect on photoluminescent emission. However, the effect becomes less prominent for copolymer P66 and P86 due to the lower content of azobenzene chromophore in the side chain of the copolymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1421–1432, 2005  相似文献   

2.
In this paper, two kinds of azobenzene-functionalized polythiophene liquid-crystalline (LC) polymers with different spacer lengths (n = 6 and 11) were synthesized. The photochromic behaviors and photoresponsive property of these polymer films were investigated by means of spectrofluorophotometer, polarized optical microscope and ARC UV lamp. The results have shown that these liquid-crystalline polythiophene films exhibit a quite fast photochemical phase transition speed and a better opticalswitching property. Furthermore, the existence of the azobenzene moiety in the side chain has also rendered the polythiophene some interesting optical properties that can be modulated by UV light irradiation, e.g., the intensity of photoluminescent emission associated with the conjugated polythiophene main chain was found to decrease upon UV irradiation and the effect becomes more prominent when shorter spacers are used in between the azobenzene group and the main chain.  相似文献   

3.
Fulgimide and various size and electronic nature of substituents on the terminal position of azobenzene in the pendant homo/copolymethacrylates were synthesized. Differential scanning calorimetry analysis indicates the homopolymer possessing Cform fulgimide unit exhibited higher Tm than that of Eform of the homopolymer and revealed Cform is highly ordered. Thermal stability suggests azobenzene homopolymers with electron donating substituents have high thermal stability than electron withdrawing substituents. Polarized optical microscopy observation disclosed homopolymers viz., NI, CY, FL, ME , and T‐ME exhibited liquid crystalline mesophases between their Tm and Ti. Optical properties of homo/copolymers were investigated by UV–vis and fluorescence spectroscopy. UV–vis spectroscopy displayed C‐form fulgimide absorption in F‐co‐FL around 482 nm which is around 40 nm lesser than C‐form of substituted azobenzene copolymers. Similarly, fluorescence pattern of F‐co‐FL by UV irradiation exhibited emission intensity slowly increased to certain level then decreases with two new emissions at 430 and 480 nm attributed to terminal position of fluorine atom on azobenzene destabilizes polar form (C‐form) fulgimide unit in the copolymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1565–1578, 2010  相似文献   

4.
Three simple structured D‐A copolymers, PBTBTz‐1 , PBTBTz‐2 , and PBTBTz‐3 , containing bithiophene (BT) donor unit and bithiazole (BTz) acceptor unit with different alkyl chain length were synthesized by the Pd‐catalyzed Stille‐coupling method. The copolymers were characterized by thermogravimetric analysis, UV–vis absorption, electrochemical cyclic voltammetry, and photovoltaic measurements. The results indicate that the introduction of BTz unit to the polythiophene main chain effectively decreases highest occupied molecular orbital levels of the copolymers and increases the open circuit voltage (Voc) of polymer solar cells (PSCs) based on the copolymers as donor, and the alkyl chain length influences the photovoltaic properties of the polymers significantly. The PSCs based on PBTBTz‐2 and PBTBTz‐3 show higher Voc up to 0.77 and 0.81 V, respectively. The power conversion efficiency of the PSC based on PBTBTz‐2 :PC70BM = 1:1(w/w) reached 2.58% with short circuit current of 8.70 mA/cm2, under the illumination of AM1.5, 100 mW/cm2. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
Two novel and well‐defined polymers, poly[6‐(5‐(diphenylamino)‐2‐((4‐methoxyphenyl)diazenyl)phenoxy)hexyl methacrylate] (PDMMA) and poly[6‐(4‐((3‐ethynylphenyl)diazenyl) phenoxy)hexyl methacrylate] (PDPMMA), which bear triphenylamine (TPA) incorporated to azobenzene either directly (PDMMA) or with an interval (PDPMMA) as pendant groups were successfully prepared via reversible addition‐fragmentation chain transfer polymerization technique. The electrochemical behaviors of PDPMMA and PDMMA were investigated by cyclic voltammograms (CV) measurement. The hole mobilities of the polymer films were determined by fitting the J‐V (current‐voltage) curve into the space‐charge‐limited current method. The influence of photoisomerization of the azobenzene moiety on the behaviors of fluorescence emission, CV and hole mobilities of these two polymers were studied. The fluorescent emission intensities of these two polymers in CH2Cl2 were increased by about 100 times after UV irradiation. The oxidation peak currents (IOX) of the PDMMA and PDPMMA in CH2Cl2 were increased after UV irradiation. The photoisomerization of the azobenzene moiety in PDMMA had significant effect on the electrochemical behavior, compared with that in PDPMMA. The changes of the hole mobility before and after UV irradiation were very small for both polymers. The HOMO energies (EHOMO, HOMO: the highest occupied molecular orbital) of side chain moieties of TPA incorporated with cis‐isomer and trans‐isomer of azobenzene in PDMMA and PDPMMA were obtained by theoretical calculation, which are basically consistent with the experimental results. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
A series of fluorene‐based copolymers containing hole blocking/electron transporting diphenyloxadiazole units were synthesized by means of Suzuki‐Miyaura coupling of selected aromatic dibromo‐ and diboronato‐ derivatives catalyzed with a Pd(PPh3)4 catalyst. All of the copolymers with various composition of main‐chain units were characterized by SEC chromatography, NMR, UV–vis, fluorescence and IR spectroscopy, and DSC. The emission stability of fluorene copolymers was improved by the replacement of alkyl groups on the C‐9 carbon of fluorene with aryl groups or by the incorporation of anthracene units into the copolymer main chain. A comparison of luminescence properties of pristine and annealed thin layers of studied copolymers was performed. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4532–4546, 2009  相似文献   

7.
The effects of solvency and mole fraction of azobenzene moieties (fPAzoMA) on the photoresponsive and fluorescence behaviors of poly(acrylic acid)‐block‐poly(6‐[4‐(4′‐methoxyphenylazo)phenoxy]hexyl methacrylate) (PAA‐PAzoMA) amphiphilic diblock copolymers were investigated using UV–vis spectroscopy and fluorescence spectroscopy. The photoresponsive behavior depended strongly on the solvency and fPAzoMA. When dissolved in a PAA‐selective solvent, PAA‐PAzoMA formed micelles with PAzoMA in the micelle core. The confinement of azobenzene moieties caused a steric hindrance, thereby markedly reducing the kinetics of photoisomerization compared with that of the unconfined PAA‐PAzoMA in a nonselective solvent. Additionally, PAA‐PAzoMA dissolved in the PAA‐selective solvent caused a blue shift of the maximum absorbance, suggesting the formation of H‐aggregates of azobenzene mesogens. The high H‐aggregate content substantially reduced the fluorescence emission. Consequently, the fluorescence emission of PAA‐PAzoMA in the nonselective solvent was more intense than that in the PAA‐selective solvent. Upon UV irradiation, the enhanced bent‐shaped cis isomers disturbed the compact packing of azobenzene mesogens, which substantially enhanced the fluorescence emission. Both the photoisomerization rate and fluorescence emission decreased with an increase in fPAzoMA. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 793–803  相似文献   

8.
Temperature‐ and pH‐sensitive copolymers and terpolymers of N‐isopropylacrylamide (NIPAAm) with itaconic acid (IA), monomethyl itaconate (MMeI), monobutyl itaconate (MBuI), monooctyl itaconate (MOcI), monocetyl itaconate (MCeI), and dimethyl itaconate (DMI) were prepared by free radical solution polymerization method. The dependence of coil‐to‐globule transition on pH and composition, molecular structures, and reactivities of monoalkyl itaconates, molecular weight distributions, and glass transition temperatures of copolymers and terpolymers were investigated using FT‐IR and UV–visible spectroscopic techniques, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and acid–base titration methods. The temperature‐/pH‐dependent coil‐to‐globule transition measurements showed that, upon increasing the content and length of alkyl chains, the lower critical solution temperatures (LCSTs) were shifted to higher temperatures. This meant that with increase in the length of hydrophobic alkyl chain in the monoitaconates intramolecular intreactions between the carboxyl groups were suppressed and LCSTs increased. The aqueous solution behaviors of NIPAAm/IA/DMI terpolymers also revealed that, even if the terpolymer hydrophobicity is increased by adding DMI units, the presence of IA units overcame the decrease in hydrophilicity of the terpolymers. The presence of DMI units in the terpolymers balanced the hydrophilic character of IA. DSC results supported the ones obtained from the pH‐dependent coil‐to‐globule transition measurements. An increase in both the chain length of alkyl groups attached to the monoitaconates and the contents of the mono‐ and dialkyl itaconates in the copolymers and terpolymers decreased the Tgs. In the case of NIPAAm/IA and NIPAAm/MMeI copolymers, the presence of the carboxyl groups forming hydrogen bonds increased the Tg, while the monoalkyl and dialkyl itaconates such as MBuI, MOcI, MCeI and DMI lead to a decrease in Tg of copolymers and terpolymers because of the suppression of intramolecular interactions (resulting from the ? COOH and ? COO? groups) through the longer alkyl spacers. The dependence of the thermosensitivity of these NIPAAm copolymers and terpolymers on different conditions of pH, and the nature and content of comonomers suggests that they can be useful in biotechnology and drug delivery applications which involve small changes in pH and temperature. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Novel photoresponsive linear, graft, and comb‐like copolymers with azobenzene chromophores in the main‐chain and/or side‐chain are prepared via a sequential ring‐opening metathesis polymerization (ROMP) and head‐to‐tail acyclic diene metathesis (ADMET) polymerization in a one‐pot procedure using Grubbs ruthenium‐based catalysts. The diluted solutions of these as‐prepared copolymers containing azobenzene chromophores exhibit photochemical transcis isomerization under the irradiation of UV light, followed by their cistrans back‐isomerization in visible light. The rates of photoisomerization are found to be slower than those of back‐isomerization, and the rate for the comb‐like copolymer is found to be from 3 to 7 times slower than that obtained for the linear or graft copolymer. This is ascribed to the differences in structure of the copolymers and the specific location of azobenzene chromophores in the copolymer, which favor a side‐chain graft structure.

  相似文献   


10.
The well‐defined azoindazole‐containing homopolymer, poly(6‐{6‐[(4‐dimethylamino) phenylazo]‐indazole}‐hexyl methacrylate) (PDHMA), and amphiphilic diblock copolymer, poly({6‐[6‐(4‐dimethylamino)phenylazo]‐indazole}‐hexyl methacrylate)‐b‐poly(2‐(dimethylamino)ethylmethacrylate) (PDHMAmb‐PDMAEMAn), were successfully prepared via reversible addition‐fragmentation chain transfer polymerization technique. The homopolymer and amphiphilic diblock copolymer in CH2Cl2 exhibited intense fluorescence emission accompanied by trans–cis photoisomerization of azoindazole group under UV irradiation. The experiment results indicated that the intense fluorescence emission may be attributed to an inhibition of photoinduced electron transfer of the cis form of azoindazole. On the other hand, the intense fluorescence emission of amphiphilic diblock copolymers in water‐tetrahydrofuran mixture was observed, which increased with the volume ratio of water in the mixed solvent. The self‐aggregation behaviors of three amphiphilic diblock copolymers were examined by transmission electron microscopy, laser light scattering, and UV–vis spectra. The restriction of intramolecular rotation of the azoindazole groups in aggregates was considered as the main cause of aggregation‐induced fluorescence emission. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

11.
Novel reversible networks utilizing photodimerization of crosslinkable anthracene groups and thermal dissociation were investigated. Reversible addition‐fragmentation chain transfer polymerization yielded well‐defined copolymers with 9‐anthrylmethyl methacrylate (AMMA) and other alkyl methacrylates such as methyl methacrylate (MMA) and 2‐ethylhexyl methacrylate (EHMA) having different AMMA compositions. Well‐controlled block copolymerization of AMMA and alkyl methacrylates was also successfully accomplished using a trithiocarbonate‐terminated poly(alkyl methacrylate) macro‐chain transfer agent. The anthracene‐containing copolymers showed reversibility via crosslinking based on photodimerization with ultraviolet irradiation and subsequent thermal dissociation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2302–2311  相似文献   

12.
We previously reported that ABA‐type triblock copolymers with azobenzene‐containing terminal blocks can be utilized as a light‐induced reworkable adhesive that enables repeatable bonding and debonding on demand. The reworkability was based on the photoisomerization of the azobenzene moiety and concomitant softening and hardening of the azo blocks. Our aim in this study is to investigate the effect of the composition, molecular weight, and block copolymer architectures on the reworkable adhesive properties. For this purpose, we prepared AB diblock, ABA triblock, and 4‐arm (AB)4 star‐block copolymers consisting of polymethacrylates bearing an azobenzene moiety (A block) and 2‐ethylhexyl (B block) side chains and performed adhesion tests by using these block copolymers. As a result, among the ABA block copolymers with varied compositions and molecular weights, the ABA triblock copolymers with an azo block content of about 50 wt % and relatively low molecular weight could achieve an appropriate balance between high adhesion strength and low residual adhesion strength upon UV irradiation. Furthermore, the 4‐arm star‐block structure not only enhances the adhesion strength, but also maintains low residual adhesion strength when exposed to UV irradiation. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 806–813  相似文献   

13.
The synthesis of ethynylene triptycene‐based copolymers with various aromatic spacers ( 3a–d ) is reported using the palladium‐catalyzed Sonogashira cross‐coupling reaction. The alkyne groups of 3a–d were oxidized into their respective α‐diketone copolymers 4a–d . Formation of 3,4a–d was confirmed by several characterization techniques, such as, gel permeation chromatography (GPC), 1H and 13C nuclear magnetic resonance (NMR), FT‐infrared (FTIR), UV–vis absorption, and emission spectroscopies. It was found that the nature of the aromatic spacer influences the emission properties of the target α‐diketone triptycene copolymers, causing either a red or blue‐shift with respect to that of their ethynylene triptycene copolymer synthons. Copolymers 4a–c with fluorene spacers reveal emission in the range of 440–475 nm, thus, qualifying them to act as blue emitters. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 931–937  相似文献   

14.
In this study, macroinitiators with different content of atom‐transfer radical polymerization (ATRP) functional group on polythiophene backbone were first prepared by the copolymerization of 3‐[1‐ethyl‐2‐(2‐bromopropionate)]thiophene and 3‐hexylthiophene with various feed ratio. Then poly [3‐hexyl‐2,5‐thienylene‐co‐3‐[1‐ ethyl‐2‐(2‐[poly(styrene)]propionate)]‐2,5‐thienylene] (PTTBr‐PS) with different graft density were obtained by ATRP of styrene from these macroinitiators in anisole. The degree of polymerization of PS sidearm (DPPS) was controlled by polymerization time. The structures of obtained graft copolymers were characterized by gel permeation chromatography (GPC), nuclear magnetic resonance (1H NMR) and differential scanning calorimetry (DSC). Introduction of the PS sidearms onto the backbone of polythiophene was an attempt to trap the polythiophene backbone in a “solution‐like” conformation, thus inhibit the packing of polythiophene backbone and result in the improvement of fluorescent property in solid state. This was verified by the UV–vis and fluorescence analyses. Besides, it was also found that the optical property of PTTBr‐PS graft copolymer was dominated by its graft density and independent on the degree of polymerization of its PS sidearm. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1003–1013, 2008  相似文献   

15.
设计合成了具有不同末端烷基链长度的偶氮苯类联酰胺衍生物N-(3,4-n-氧基苯基)-N'-4-(偶氮苯基)苯甲酰肼(Dn,n=7,8,10).Dn可以形成稳定的有机凝胶,末端烷基链增加有利于提高凝胶能力和热力学稳定性.凝胶形成的驱动力主要为联酰胺基团间的分子间氢键以及偶氮苯基团间的π-π相互作用和烷基链间的范德华力.在紫外光照射下,Dn中的反式偶氮苯向顺式转化,并且在溶液中的光响应性非常显著,但凝胶态下偶氮苯的光致顺反异构不能诱导凝胶-溶胶的转变.  相似文献   

16.
Copolymers of p-(phenylazo)benzyl-L-aspartate and n-octadecyl-L-aspartate exist as right- and left-handed α-helices in solution at 25°C depending on the copolymer composition: the reversal of helix sense from a right- to left-handed one occurs with increasing the azobenzene content. The α-helices of the copolymers are very sensitive to trifluoroacetic acid (TFA), and are converted into random coil below 2.0% of TFA. Among the copolymers, the copolymer containing 47% azobenzene groups is unique since it exhibits a TFA-induced conformational change from right-handed α-helix to random coil via left-handed α-helix. Upon UV light irradiation at 25°C, the copolymers containing 68 and 89% azobenzene groups caused the reversal in helix sense from a left- to right-handed one. The conformations of the copolymers were dependent on temperature, mostly right-handed and left-handed α-helices at lower and higher temperatures, respectively. On this basis, the copolymer containing 47% azobenzene groups could be made to undergo a photoinduced helix reversal at high temperatures.  相似文献   

17.
Graft copolymers of ethyl cellulose with azobenzene‐containing polymethacrylates were synthesized through atom transfer radical polymerization (ATRP). The residual hydroxyl groups on ethyl cellulose were first esterified with 2‐bromoisobutyryl bromide to yield 2‐bromoisobutyryloxy groups, which was then used to initiate the polymerization of 6‐[4‐(4‐methoxyphenylazo)phenoxy]hexyl methacrylate (MMAzo) in the presence of CuBr/N,N,N′,N″,N″‐pentamethylenetriamine (PMDETA) as catalyst and anisole as solvent. The graft copolymers were characterized by gel permeation chromatography (GPC) and 1H‐NMR. The molecular weights of the graft copolymers increased relatively to the macroinitiator, and the polydispersities were narrow. The thermal and liquid crystalline property of the graft copolymers were investigated by differential scanning calorimeter (DSC) and polarizing optical microscope (POM). Photoresponsive property was studied under the irradiation of UV–vis light in THF solution. The graft copolymers have potential applications, including sensors and optical materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1653–1660, 2007  相似文献   

18.
Poly(3‐hexylthiophene)‐b‐poly(3‐pentenylthiophene) and poly(3‐hexylthiophene)‐b‐poly(3‐undecenylthiophene) diblock copolymers have been synthesized by McCullough method. X‐ray diffraction analysis of the diblock copolymers displayed all the reflection peaks specific to regioregular poly(3‐hexylthiophene), indicating that the presence of poly(3‐alkenylthiophene) block does not affect the packing of the polymer in the solid state. The synthesized diblock copolymers were subjected to hydroboration/oxidation and hydrosilation to demonstrate the reactivity of the alkenyl substituents. Furthermore, poly(3‐hexylthiophene)‐b‐poly(3‐pentenylthiophene) was used as a chain transfer agent for the ruthenium‐catalyzed ring‐opening metathesis polymerization of cyclooctene to generate a polycyclooctene graft copolymer, which was hydrogenated to give poly(3‐hexylthiophene)‐b‐poly(3‐pentenylthiophene‐g‐polyethylene). The opto‐electronic properties and the morphology of the synthesized polymers have been investigated. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.

Three kinds of photoresponsive copolymers with azobenzene side chains were synthesized by radical polymerization of N‐4‐phenylazophenylacrylamide (PAPA) with N‐isopropylacrylamide (NIPAM), N,N‐diethylacrylamide (DEAM) or N,N‐dimethylacrylamide (DMAM) respectively. Their structures were characterized by FT‐IR, 1H‐NMR and UV/Vis spectroscopy. Their reversible photoresponses were studied with or without α‐cyclodextrin (α‐CD), which showed that both the copolymers and their inclusion complexes with α‐CD underwent rapid photoisomerization. The lower critical solution temperature (LCST) of the copolymers and their inclusion complexes with α‐CD were investigated by cloud point measurement, which showed that the LCST of three kinds of copolymers increased largely after adding α‐CD. After UV irradiation on the solutions of copolymers and their inclusion complexes, the LCST of the copolymers increased slightly with the absence of α‐CD, while decreased largely with the presence of α‐CD. Furthermore, the LCST reverted to its originality after visible light irradiation. This change of LCST could be reversibly controlled by UV and visible light irradiation alternately. In particular, in the copolymer of PAPA and DMAM, the reversible water solubility of the inclusion complexes could be triggered by alternating UV and visible light irradiation.  相似文献   

20.
The azobenzene‐based amphiphilic copolymers have drawn significant attention as a kind of multi‐responsive smart materials. The demand on deeper investigation of how the azobenzene group influences the micelles formation and light‐responsive behavior on molecular level is very urgent. In this article, multi‐responsive block copolymers, poly (acrylic acid)‐block‐poly[4'‐[[(2‐Methacryloyloxy)ethyl]ethylainino]azobenzene‐co‐poly (ethylene glycol) methyl ether methacrylate] (PAA‐b‐P (AzoMA‐co‐PEGMA)), with pH‐, light‐ and reduction‐responsiveness were synthesized by the monomers of AzoMA, PEGMA and acrylic acid via reversible addition‐fragmentation chain transfer polymerization (RAFT). The amphiphilic block copolymer presented aggregation‐induced emission effect, and it was pH, light, and reduction responsive. The results showed that the micelle size decreased with the decreasing of pH within a certain range. However, the particle size of micelles increased significantly when the pH was 4. Once adding reduction agent, the micelles were disassembly. Fluorescent molecule of Nile red was selected as a hydrophobic guest molecule to study the properties of encapsulating and releasing abilities of block copolymer micelles for guest molecules. The results showed that the loading capacity of three kinds of copolymer micelles was closely related to the aggregates formed by the hydrophobic block, mainly azobenzene block. Besides, the block copolymer micelles could release a certain amount of Nile red under the irradiation of UV light, the reduction with Na2S2O4 as reductant, and the exposure to alkaline environment. The mechanism of how the different status of azobenzene group influenced the self‐assembly and multi‐responsive behavior was explored on molecular level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号