首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 321 毫秒
1.
The synthesis of norvancomycin (NVan)-capped silver nanoparticles (Ag@NVan) and their notable in vitro antibacterial activities against E. coli, a Gram-negative bacterial strain (GNB), are reported here. Mercaptoacetic acid-stabilized spherical silver nanoparticles with a diameter of 16±4 nm are prepared by a simple chemical reaction. The formation process of the silver nanoparticles is investigated by UV-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). NVan is then grafted to the terminal carboxyl of the mercaptoacetic acid in the presence of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDAC). The TEM images of single bacteria treated with Ag@NVan show that plenty of Ag@NVan aggregate in the cell wall of E. coli. A possible antibacterial mechanism is proposed that silver nanoparticles may help destroy the stability of the outer membrane of E. coli, which makes NVan easier to bind to the nether part of the peptidoglycan structure. The antibacterial activities of silver nanoparticles on their own, together with the rigid polyvalent interaction between Ag@NVan and cell wall, enables Ag@NVan to be an effective inhibitor of GNB. This kind of bionanocomposites might be used as novel bactericidal materials and we also provide an effective synthesis method for preparing functional bioconjugated nanoparticles here.  相似文献   

2.
Undoped and palladium doped titania nanoparticles have been prepared by sol–gel method using isopropyl alcohol as solvent. The products have been characterized through XRD, FESEM, TEM, HRTEM, FTIR, specific surface area analysis and ICPOES technologies. The antibacterial activities of the products against Escherichia coli (E. Coli) have been investigated by microcalorimetric method and antibacterial circle method, respectively. The process of E. Coli growth and metabolism affected by nanoparticles has been monitored using a Thermal Activity Monitor (TAM) Air Isothermal Calorimeter by microcalorimetric method. The results indicate that undoped and palladium doped titania nanoparticles present better antibacterial activities. Among them, 3 mol% Pd doped titania nanoparticles exhibit the best antibacterial activity due to the lowest value of minimum inhibitory concentration (MIC). This result is in accordance with that of the antibacterial circle method. This work provides a general analytic technology to quantification study antibacterial activity of nanomaterials against various bacteria by microcalorimetric method, which could be a potential application in the future.  相似文献   

3.
The present work describes ceric ammonium nitrate (CAN) initiated graft copolymerization of acrylamide onto cellulose-based filter paper followed by entrapment of silver nanoparticles. The copolymerization was carried out in aqueous solution, containing 2 M acrylamide monomer and 16 mM N,N’-methylene bisacrylamide (MB) crosslinker. The optimum initiation time and grafting reaction temperature were found to be 15 min and 30 °C, respectively. The silver nanoparticles were loaded into grafted filter paper by equilibration in silver nitrate solution followed by citrate reduction. The formation of silver nanoparticles has been confirmed by TEM and SAED analysis. The novel nano silver loaded filter paper has been investigated for its antimicrobial properties against E.coli. This newly developed material shows strong antibacterial property and thus offers its candidature for possible use as antibacterial food-packaging material.  相似文献   

4.
Design of silver nanoparticles containing poly(N-isopropylarclamide) (PNIPAAm) hydrogels were prepared by free-radical polymerization of N-isopropylarclamide as an environmentally sensitive monomer and MBA as a crosslinker in an aqueous medium. The embedded silver nanocomposite hydrogels (AgNCH) structure were characterized by, UV-Vis, FTIR, DLS, TEM and X-ray analysis. Curcumin loading and release characteristics were performed for PNIPAAm hydrogel, silver ions loaded hydrogels as well as silver nanocomposite hydrogels. These curcumin loaded silver nanocomposite hydrogels exhibit excellent antibacterial action on Escherichia coli (E. coli). Therefore, the present study clearly provides novel antimicrobial hydrogels which are potentially useful in biomedical applications.  相似文献   

5.
Silver‐based nanocomposites are known to act as biocides against a series of microorganisms and are largely studied as an alternative to substitute conventional antibiotics that show decreasing efficacy. In this work, an eco‐friendly method to synthesize silver nanoparticles assembled on the surface of hexaniobate crystals is reported. By means of ion exchange, K+ ions of layered potassium hexaniobate were partially substituted by Ag+ ions and the resulting material was exposed to UV light. The irradiation allowed the reduction of silver ions with consequent formation of silver nanoparticles located only on the hexaniobate surface, whereas Ag+ ions located in the interlayer space remained in the ionic form. Increasing UV‐light exposure times allowed controlling of the silver nanoparticle size. The antibacterial effects of the pristine potassium hexaniobate and of silver‐containing hexaniobate samples were tested against Escherichia coli (E. coli). The antibacterial efficacy was determined to be related to the presence of silver in hexaniobate. An increasing activity against E. coli was observed with the decrease in silver nanoparticles size, suggesting that silver nanoparticles of distinct sizes interact differently with bacterial cell walls.  相似文献   

6.
A variety of fluoroalkyl end‐capped oligomers/silver nanocomposites were prepared by the reactions of silver ions with poly(methylhydrosiloxane) in the presence of fluoroalkyl end‐capped N,N‐dimethylacrylamide oligomer, N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide oligomer, N,N‐dimethylacrylamide cooligomer containing poly(dimethylsiloxane) segments in organic media such as toluene and 1,2‐ dichloroethane. These fluorinated oligomers/silver nanocomposites thus obtained were found to exhibit clear plasmon absorption bands around 420 nm related to the formation of silver nanoparticles. In particular, these composites could display narrow plasmon absorptions around 420 nm in toluene by the addition of trioctylamine (TOA). On the other hand, the corresponding non‐fluorinated N‐(1,1‐ dimethyl‐3‐oxobutyl)acrylamide oligomer was not able to afford such a plasmon absorption under similar conditions. These fluorinated oligomers/silver nanocomposites in organic media have been found to be stable for more than 10 days. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements showed that silver nanoparticles could be effectively encapsulated into fluorinated oligomeric aggregate cores to afford colloidal stable fluorinated oligomers/silver nanocomposites. Fluorinated oligomers/silver nanocomposites were also applied to the surface modification of traditional organic polymers such as polystyrene (PSt) and poly(methyl methacrylate) (PMMA) to exhibit not only a good oleophobicity imparted by fluorine but also a higher surface antibacterial activity related to the silver nanoparticles on their surface. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Pure and silver doped nanoparticles of titanium dioxide (TiO2) was prepared using novel, modified sol–gel method. The samples were characterized by transmission electron microscopy, X-ray diffraction, N2 adsorption measurement, atomic absorption spectroscopy (AAS), UV–vis spectroscopy (UV–vis). The antibacterial activity of the prepared samples was indicated by minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) values according to the reference methods of Clinical and Laboratory Standards Institute for the determination of MIC of aerobic bacteria by broth microdilution. The results showed very good antibacterial activity of silver nanoforms to bacteria strains: Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli and Klebsiella pneumoniae. The sensitivity of the tested bacteria to silver nanoforms depends on the crystalline form of the carrier—TiO2, its surface area, porosity, the content of silver, its particle size and oxidation state. The originality of this work is the synthesis of novel type of nanocomposites TiO2 doped with silver and determination its excellent antibacterial activity.  相似文献   

8.
Silver and copper nanoparticles were produced by an ecologically safe metal vapor synthesis (MVS) method using acetone as an organic dispersion medium. Transmission electron microscopy (TEM) showed that the specimens are spherical and polydisperse, and their average size is 2.5 nm for silver nanoparticles (Ag NPs) and 2.6 nm for copper nanoparticles (Cu NPs). X-ray photoelectron spectroscopy analyses showed that the state of silver in the nanoparticles is close to that of silver in the Ag0 state, whereas copper black contains two oxidized states of the metal—Cu+ and Cu2+. Biological in vitro studies demonstrated that the nanoparticles have antibacterial activity against Gram-positive and Gram-negative bacterial species. Cu NPs exhibited more prominent antibacterial effects and induced significant growth inhibition of Bacillus cereus and Escherichia coli. Both types of nanoparticles showed anticancer properties in vitro. Cu NPs induced intense cytotoxicity in cancer and normal fibroblasts in vitro cultures, but their inhibitory effect against noncancerous cells was milder compared with cancer cell lines. Ag NPs demonstrated selective cytotoxicity against human lung and cervical adenocarcinoma cell lines. Further in vitro studies indicated that the mechanism of Ag NPs and Cu NPs anticancer effects involves induction of apoptosis. The present study describes a green synthesis approach for production of biologically active silver and copper nanoparticles and highlights their potential for medical application.  相似文献   

9.
Chitosan‐carboxymethyl cellulose (CMC) full polysaccharide membrane was prepared by cross‐linking of chitosan with CMC dialdehyde and subsequent reductive amination. CMC dialdehyde molecule was prepared by periodate oxidation of CMC and then applied as a cross‐linking agent to form a new membrane network. The properties of oxidized CMC were investigated by various methods such as Fourier transform infrared (FT‐IR) spectroscopy, 1H NMR spectroscopy, and viscosity test. Then, novel chitosan‐CMC silver nanocomposite was prepared using chitosan‐CMC as a carrier. The structure of the chitosan‐CMC membrane and the silver nanocomposite were confirmed by FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). TEM images indicate that the chitosan‐CMC nanocomposite comprises silver nanoparticles with diameters in the range of about 5–20 nm. The antibacterial studies of the nanocomposite were also evaluated. The chitosan‐CMC silver nanocomposite demonstrates good antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Stable silver nanoparticles were synthesized with the aid of a novel, non-toxic, eco-friendly biological material namely, green pepper extract. The aqueous pepper extract was used for reducing silver nitrate. The synthesized silver nanoparticles were analyzed with transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). TEM image shows the formation of silver nanoparticles with average particle size of 20 nm which agrees well with the XRD data. The main advantage of using pepper extract as a stabilizing agent is that it provides long-term stability for nanoparticles by preventing particles agglomeration. To investigate the electrocatalytic efficiency of silver nanoparticles, silver nanoparticles modified carbon-paste electrode (AgNPs–CPE) displayed excellent electrochemical catalytic activities towards hydrogen peroxide (H2O2) and hydrogen evolution reaction (HER). The reduction overpotential of H2O2 was decreased significantly compared with those obtained at the bare CPE. An abrupt increase of the cathodic current for HER was observed at modified electrode. Also, the antibacterial activity of silver nanoparticle was performed using Escherichia coli and Salmonellae. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.  相似文献   

11.

The current study was undertaken to investigate the antibacterial (against molecular characterized E. coli isolated from poultry faeces) potential of biosynthesized zinc oxide nanoparticles (ZnO-NPs) from Passiflora subpeltata Ortega aqueous leaf extract. The biosynthesized nanoparticles were subjected to physico-chemical characterization to study shape, size and purity by UV–Vis spectroscopy, X-Ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and Transmission Electron Microscopy (TEM). The molecular identification of isolated E. coli from faeces samples was carried out by using 16–23s rRNA primers. The results of the physico-chemical characterization revealed that the biosynthesized nanoparticles were of 93.7% purity with an average size between 45 and 50 nm. The ZnO-NPs offered significant inhibition against the isolated Gram-negative E. coli with MIC at 62.5 µg mL?1 concentration. The antibacterial potential of ZnO NPs against E. coli has also been investigated by the cell viability test, and further the effects of ZnO NPs on bacterial morphological structures was analysed by SEM and TEM.

  相似文献   

12.
The presented study concerns the preparation and investigation of silver particles in presence of hydroxylated polyester dendrimers used as stabilizing agent. Altogether a full series of water soluble and aliphatic bis-MPA dendrimers from first to fifth generation was used as to stabilize silver nanoparticles in situ. A special focus is set on the biological properties. The antibacterial properties of the dendrimer stabilized silver particles are tested against Escherichia coli and the toxicity against human cells is tested with the human epithelial cell line A549. Under the chosen testing arrangement, it was observed that the silver particles contain a significant antibacterial effect against E. coli. Silver particles stabilized in situ with dendrimers of higher generation seem to contain a stronger antibacterial property. No toxicity against human cells was observed for the silver particles even in case of the highest investigated silver concentration. Altogether the here prepared and investigated silver particles could offer a great potential for application as antibacterial agent with low human toxicity.  相似文献   

13.
Silver‐loading asymmetric cellulose acetate (CA) hollow fiber membrane was spun via the dry jet‐wet spinning technique. The spinning solution was prepared by dissolving AgNO3 and CA in N,N‐dimethylformamide (DMF). The silver ions were reduced in the spinning dope into silver nano‐particles. The morphology of the resulting hollow fibers was examined using a scanning electron microscope and the silver content in the fiber was measured using an inductively coupled plasma atomic emission spectrometer. The antibacterial activities were evaluated. These hollow fibers had a sponge‐like structure and dense inner and outer surfaces. At a 50 k magnification, the pore on the skin layer was not observable, while the nodule size was smaller than 10 nm. The residual silver content of as‐spun hollow fiber was about 60% of the original silver added in the polymer solution. After immersing in water bath for 180 days, the silver content in the bulk of the hollow fibers decreased to 60% and the silver content on the surface reduced to 10%, yet still showed antibacterial activity against Escherichia coli and Staphylococcus aureus. After permeating with water for 5 days, the silver content in the hollow fibers decreased, and did not show antibacterial activity against E. coli and S. aureus. Thus, silver content must be periodically replenished after permeation. The proper range of AgNO3 in the spinning solution for CA hollow fiber should be about 100–1000 ppm. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
We prepared four differently shaped Te nanomaterials (NMs) as antibacterial reagents against Escherichia coli. By controlling the concentrations of hydrazine (N2H4) as reducing agent, NaCl, and temperature, we prepared Te nanowires, nanopencils, nanorices, and nanocubes. These four Te NMs resulted in a live/dead ratio of E. coli cells of less than 0.1, which is smaller than that of Ag nanoparticles. The order of antibacterial activity against E. coli is nanocubes ≈ nanorices > nanopencils ≈ nanowires. This is in good agreement with the concentration order of tellurite (TeO32−) ions released from Te NMs in E. coli cells, revealing that TeO32− ions account for the antibacterial activity of the four Te NMs. We found that spherical Te nanoparticles (32 nm in diameter) with TeO32− ions were formed in the E. coli cells. Compared to Ag nanoparticles that are commonly used as antibacterial reagents, Te NMs have higher antibacterial activity and lower toxicity. Thus, Te NMs hold great practical potential as a new and efficient antibacterial agent.  相似文献   

15.
Hybrid silver/chitosan composites were prepared and transmission electron microscopy (TEM) exhibited that silver nanoparticles were embedded in chitosan. The antibacterial activities of these composites were screened against Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus, and Bacillus subtilis, which were much higher than that of chitosan. The TEM images of the treated bacteria showed that silver nanoparticles adhered to the bacterial cell surface and entered the interior of the cell, assuming that silver nanoparticles released from silver/chitosan composites could efficiently destroy the cell integrity of bacteria. Moreover, the composites exhibited higher antioxidant activity than chitosan based on the assessment of 2,2-diphenyl-1-picrylhydrazyl and hydroxyl radical scavenging and reducing power.  相似文献   

16.
A new composite cotton fabric with hydrogel containing silver nanoparticles (AgNPs) has been synthesized by two steps, and simultaneous in situ synthesis of AgNPs under visible light irradiation has been performed. The influence of silver nitrate concentration upon the hydrogel and AgNP properties was studied by colorimetric analysis, scanning electron microscopy, and transmission electron microscopy. The antibacterial activities of the composite materials have been investigated against Acinetobacter johnsonii and Escherichia coli in agar medium and meat-peptone broth. The results showed high inhibition activity toward both test cultures which were better expressed against A. johnsonii.  相似文献   

17.
Durable antibacterial Ag/polyacrylonitrile (Ag/PAN) hybrid nanofibers were prepared by atmospheric plasma treatment and electrospinning. Atmospheric helium plasma treatment was first used to reduce the AgNO3 precursor in pre-electrospinning solutions into metallic silver nanoparticles, followed by electrospinning into continuous and smooth nanofibers with Ag nanoparticles embedded in the matrix. SEM, TEM, and EDX spectra were used to study the structure and surface elemental composition of the nanofibers. Silver nanoparticles, with diameters ranging between 3 and 6 nm, were found to be uniformly dispersed in the nanofiber matrix. The Ag/PAN nanofibers exhibited slow and long-lasting silver ion release, which provided robust antibacterial activity against both Gram-positive Bacillus cereus and Gram-negative Escherichia coli microorganisms.  相似文献   

18.
The purpose of this experiment was the green synthesis of silver nanoparticles from aqueous extracts of Ziziphora clinopodioides Lam (AgNPs@Ziziphora) and assessment of their cytotoxicity, antioxidant, antibacterial, antifungal, and cutaneous wound-healing effects. These nanoparticles were characterized using ultraviolet–visible spectroscopy (UV–Vis), X-ray diffraction (XRD), field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy (FESEM-EDX), atomic force microscopy (AFM), and transmission electron microscopy (TEM). UV–Vis, TEM, and FESEM analyses indicated that the size of Ag nanoparticles (AgNPs) depended on Z. clinopodioides and AgNO3 concentrations. In vitro biological experiments indicated that AgNPs@Ziziphora has excellent antioxidant potential against DPPH, antifungal effects against Candida guilliermondii, Candida krusei, Candida glabrata, and Candida albicans, and antibacterial activities against Staphylococcus aureus, Bacillus subtilis, Streptococcus pneumonia, Salmonella typhimurium, Pseudomonas aeruginosa, and Escherichia coli O157:H7. Also, these nanoparticles did not exhibit cytotoxicity property against human umbilical vein endothelial cells (HUVECs). An in vivo biological test revealed that AgNPs@Ziziphora ointment significantly (p ≤ 0.01) increased the levels of wound contracture, blood vessels, hydroxyl proline, hexuronic acid, hexosamine, fibrocytes, fibroblasts, and fibrocyte/fibroblast ratio and significantly (p ≤ 0.01) decreased the wound area, and levels of total cells, neutrophils, and lymphocytes than other groups in rats. The results of UV–Vis, XRD, FESEM-EDX, AFM, and TEM confirmed that the aqueous extract of Z. clinopodioides can be used to produce silver nanoparticles with significant antioxidant, antimicrobial, and cutaneous wound-healing properties without any cytotoxicity.  相似文献   

19.
In this study, a facile, efficient, and surfactant‐free method to synthesize silica nanosphere‐supported ultrafine silver nanoparticles (AgNPs) (~2.5 nm) was developed, and their antibacterial effects were investigated. In the synthesis process, the hydrolysis of 3‐mercaptopropyltrimethoxysilane was adopted to provide thiol groups and in situ reduce Ag+ to Ag0 for ultrafine AgNPs formation on the surface of the silica nanosphere. Electron microscopy characterization of the complex formed revealed that the ultrafine AgNPs were not agglomerated and grow without any surfactants because there were no excess electrons transported from the shell to reduce the silver ions to silver atoms. The antibacterial effects of the supported ultrafine AgNPs with the surfactant‐free surface were evaluated against the Escherichia coli even at very low dosage. After incubation with 20 μg/mL silica‐supported AgNPs up to 120 min, 99.7% of the E. coli were inactivated, according to the bacterial viability measured by flow cytometry.  相似文献   

20.
Biodegradable poly(l-lactide) (PLA) ultrafine fibers containing nanosilver particles were prepared via electrospinning. Morphology of the Ag/PLA fibers and distribution of the silver nanoparticles were characterized. The release of silver ions from the Ag/PLA fibers and their antibacterial activities were investigated. These fibers showed antibacterial activities (microorganism reduction) of 98.5% and 94.2% against Staphylococcus aureus and Escherichia coli, respectively, because of the presence of the silver nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号