首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The interaction between self-aggregated porphyrins such as 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) and 5,10,15,20-tetrakis(4-phosphonatophenyl)porphyrin (TPPP), and a generation 5 (G5) PAMAM dendrimer template is governed by minute differences of porphyrin acido-basic properties. While at neutral pH both monomeric TPPS and TPPP form complexes with G5, decreasing pH did not lead to porphyrin ring protonation (pK(a) approximately 5) but rather to the preferential formation of H-aggregates (probably H-dimers), most likely due to protonation of the G5. Upon further acidification of the solution, this face-to-face orientation of the porphyrin units is being converted to edge-to-edge aligned J-aggregates with a tightly defined structure. This process starts by protonation of the porphyrin ring at pH below 2.3 and 2.8 for TPPS and TPPP, respectively. The AFM imaging of porphyrin/G5 nanostructures obtained at pH 0.7 shows the formation of long nanorods of TPPS with partially aggregated G5 and small aggregates of TPPP connected to individual G5 molecules.  相似文献   

2.
The molecular organization of a mixed film, containing a water-soluble tetracationic porphyrin (TMPyP) and a p-tert-butyl calix[8]arene octacarboxylic acid derivative (C8A), at the air-water interface and on a solid support (LB film), has been investigated. Although the TMPyP aggregation was not detected at the air-water interface, TMPyP J-aggregates have been found in the LB films (Y-type). Unlike tetraanionic porphyrins, for example TSPP, the TMPyP J-aggregates are not induced by a zwitterion formation. The TMPyP J-aggregation is a result of a "double comb" configuration, where porphyrins from opposite layers are interwoven in a linear infinite J-aggregate. Our results confirm that TMPyP molecules tend to self-aggregate strongly, provided the electrostatic repulsions of their peripheral groups are cancelled by the anionic groups of the C8A matrix.  相似文献   

3.
Abstract— The title compound forms well-behaved monomolecular films at the air-water interface. The surface pressure-molecular area isotherms change with the pH of the subphase in a manner which suggests that the carboxylic acid group acts as the hydrophylic portion of the molecule with a pKa of –7.3. In compressed monolayers the porphyrin ring appears to be oriented so that the plane of the ring is perpendicular to the surface. Spectroscopic studies of single monolayer films transferred to quartz slides using the Langmuir-Blodgett technique indicate that three distinct species are present in the films, with the amount of each phase depending on the pH of the subphase. One species, present at low pH, is assigned as a monomer on the basis of its optical and fluorescence spectra and its fluorescence lifetime. At low pH this monomer species co-exists with another non-fluorescent aggregated species. For films formed on subphases with pH > 7.3, these two species are converted to a single, weakly fluorescent species which exhibits an unusual absorption spectrum. We postulate that this third species is a constrained aggregate but rule out the possibility of a face-to-face dimer on spectroscopic grounds. For films at the air-water interface specular reflection, indicative of a smooth, highly absorbant film, is observed from monolayers of the title compound. Visual examination of this phenomenon proved to be very useful in assessing the completeness of spreading and the collapse point. Under certain conditions a distinct macroscopic structure is observed in the monolayer film. This structure is interpreted as evidence for the presence of two or more two-dimensional crystalline phases. Support for this view comes from previous measurements of specular reflection on single crystals of tetraphenylporphyrin. There is no indication that variations in the macroscopic structure of the films have any significant effect on the microscopic properties such as the surface pressure-area isotherms.  相似文献   

4.
Mixed Langmuir monolayers and Langmuir-Schaefer (LS) films containing the cationic metallosurfactant bis(2-phenylpyridine)(4,4'-diheptadecyl-2,2'-bipyridine)-iridium(III) chloride (Ir-complex) and the anionic tetrakis(4-sulfonatophenyl)porphyrin (TSPP) in 4:1 molar ratio have been successfully prepared by the co-spreading method at the air-water interface. The presence of both luminescent species at the interface, as well as the organization of the TSPP underneath the Ir-complex matrix in Langmuir and LS films, is inferred by surface techniques such as π-A isotherms, reflection spectroscopy, Brewster angle microscopy (BAM) and UV-visible absorption spectroscopy. A red-shift in the absorption band of the porphyrin under the compression of the mixed monolayer suggests the J-aggregation of the TSPP under the Ir-complex matrix. To date, this is the first report of Langmuir and/or LS films containing these two types of species together. Furthermore, the intermolecular energy transfer between Ir-complex and TSPP molecules in solution and in transferred mixed films is investigated through steady-state fluorescence and lifetime measurements. These results indicate that effective intermolecular energy transfer occurs from the Ir-complex to the TSPP molecules in LS films. The influence of the spatial proximity of donor and acceptor molecules has been studied by the insertion of lipid interlayers among them.  相似文献   

5.
胆红素有序分子膜的行为研究   总被引:3,自引:0,他引:3  
研究了不同亚相表面胆红素(BR)单分子膜和LB膜的性质,讨论了胆红素分子在有序分子膜中的堆积密度、分子伸展和金属离子配位。在气-水界面,BR与金属离子的配位导致BR单分子截面积、崩溃压和可见紫外光谱的变化。原子力显微镜表明BR-Cu单分子膜的厚渡为1.23 nm。  相似文献   

6.
Thin films consisting of two fulleropyrrolidine derivatives 1 or 2 and a water-soluble porphyrin, TPPS4, were prepared by the Langmuir-Sch?fer (LS, horizontal lifting) method. In particular, a solution of the fulleropyrrolidine in chloroform and dimethyl sulfoxide was spread on the water surface, while the porphyrin (bearing peripheral anionic sulfonic groups) was dissolved into the aqueous subphase. To the best of our knowledge, such a versatile method for film fabrication of fullerene/porphyrin mixed composite films has never been used by other researchers. Evidence of the effective interactions between the two components at the air-water interface was obtained from the analysis of the floating layers by means of surface pressure vs area per molecule Langmuir curves, Brewster angle microscopy, and UV-visible reflection spectroscopy. The characterization of the LS films by UV-visible spectroscopy reveals that in each case the two constituents behave as strongly interacting pi systems. The use of polarized light suggests the existence of a preferential direction of the TPPS4 macrocyclic rings with an edge-on arrangement with respect to the substrate surface, regardless which fulleropyrrolidine derivative is in the composite film. Atomic force microscopy investigations give evidence of morphologically flat layers even for LS transfer at low surface pressures. Photoaction spectra were recorded from films deposited by only one horizontal lifting onto indium-tin-oxide (ITO) electrodes, and the observed photocurrent increased notably with increasing transfer surface pressure for both 1/TPPS4 and 2/TPPS4 composite films. IPCE values are larger for 2/TPPS4 systems in comparison with 1/TPPS4 composite layers. Finally, a nonconventional approach to photoinduced phenomena is proposed by differential spectroscopy in the FT-IR attenuated total reflectance (ATR) mode.  相似文献   

7.
The aggregation behaviors of meso-tetrakis(p-sulfonatophenyl)porphyrin (TPPS) in the function of metal ions and their counter anions (Cl(-), SO(4)(2-), and NO(3)(-)) were investigated by absorption, fluorescence spectroscopy and resonance scattering spectrum. It was shown that the TPPS J-aggregates could be effectively promoted by metal ions under lower ionic strength. Moreover, the prominent effects of counter ions (Cl(-), SO(4)(2-), and NO(3)(-)) on TPPS J- and/or H-aggregate formation at higher ionic strength were observed. These results suggested that the counter anions play a significant role in the formation of TPPS J- and/or H-aggregates and their conversion each other. Very interestingly, the absorption spectrum of metal ions investigated except for Co(2+) leaves a WINDOW from ca. 450 to 550nm centered at 490nm in which the absorption of Cu(2+) or Ni(2+) ions per se was very weak. The spectrum window might be really significant in avoiding possible spectrum interferences when porphyrins are chosen as spectrometric reagents for the determination of metal ions based on J-aggregation.  相似文献   

8.
The J-aggregation behavior of diprotonated tetrakis(4-sulfonatophenyl)porphyrin (H2TPPS4(2-)) in aqueous solution in the presence of the hydrophilic ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) was investigated in detail using UV-vis absorption spectroscopy, fluorescence spectroscopy, resonance light scattering (RLS) spectroscopy, Raman spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. With the addition of bmimBF4, increasing peaks appeared at a wavelength of 490 nm in the absorption spectra to account for the formation of H 2TPPS4(2-) J-aggregates. In addition, the experimental results also showed decreased fluorescence emission, enhanced RLS signals, intensified Raman scattering peaks, and the disappearance of NMR signals to further indicate that porphyrin J-aggregates exist in the studied system. NMR shifts of bmimBF 4 toward high field occurred corresponding to H2, H4, and H5 in the cationic imidazolium ring (bmim+), suggesting that bmim+ enters the magnetic shielding domain of the anionic phenyl sulfonate ion owing to the association process between the "large" cation and anion. Additionally, the fact that the absorption spectral shifts occurred in the nonprotonated porphyrin TPPS4(4-) further indicates the existence of the ion association effect of bmim+, which functions as an important factor in porphyrin aggregation.  相似文献   

9.
Total imernal reflection fluorescence spectroscopy (TIRF) and synchronous scanning technique were combined to study the adsorption behavior of the meso-tetrakis (4-sulfonatophenyl)porphyrin (TPPS) at the glass-water interface without any surfactant. The pH dependence of synchronous fluorescence signal at the interface was analyzed. Both unprotonated (TPPS^4-) and diprotonated (H2TPPS^2-) forms of TPPS were observed at the interface. But the interface favored the adsorption of. The apparent estimated pKa2 value shifted from 5.00 in the bulk solution to 2.7 at the interface. STIRF provides a good technique to study multi-component systems at the interface.  相似文献   

10.
胆红素及其两亲衍生物的Langmuir-Blodgett膜研究   总被引:1,自引:0,他引:1  
研究了亚相酸度和金属离子对胆红素(1)及其两个两亲衍生物胆红素二(十八烷基)酯(2)和胆红素二(十八烷基)酰胺(3)的单分子膜和LB膜性能的影响.通过π-A等温线、X射线光电子能谱、紫外-可见光谱等方法,研究了它们在有序分子膜中的分子伸展及与金属离子的配位方式.胆红素及其两亲衍生物与金属离子在有序分子膜中的配位(生成1:1型配合物)明显不同于其在本体溶液中的配位(1:1,1:2或2:1型配合物).小角X射线衍射表明1,2和3形成双层膜间距分别为2.15,5.55和5.65nm的Y型LB膜.  相似文献   

11.
The ability of beta-cyclodextrin (beta-CD), sulfurbutylether-beta-CD (SBE-beta-CD) and hydroxypropyl-beta-CD (HP-beta-CD) to break the aggregate of the meso-Tetrakis (4-sulfonatophenyl) porphyrin (TPPS4) and to form 2:1 inclusion complexes has been studied by adsorption and fluorescence spectroscopy. The formation constants are calculated, respectively by fluoremetry, from which the inclusion capacity of different CDs is compared and the inclusion mechanism of charged-beta-CD (SBE-beta-CD) is quite different from that of parent beta-CD. At lower pH, the complexation between HP-beta-CD and H2TPPS(2+)4 (the form of the diprotonated TPPS4) hampers the continuous protonation of the pyrrole nitrogen of TPPS4 and the hydrophobic cavity may prefer to bind an apolar neutral porphyrin molecule. 1HNMR data support the inclusion conformation of the porphyrin-cyclodextrin supramolecular system, indicating the interaction of meso-phenyl groups of TPPS4 with the cavity of CDs. For this host-guest inclusion model, cyclodextrin, being regarded as the protein component, which acts as a carrier enveloping the active site of heme prosthetic group within its hydrophobic environment, provides a protective sheath for porphyrin, creating artificial analogues of heme-containing proteins. However, the TPPS4, encapsulated within this saccharide-coated barrier, its physico-chemical, photophysical and photochemical properties changed strongly.  相似文献   

12.
In this paper, the different aggregation modes of a water-insoluble porphyrin (EHO) mixed with an amphiphilic calix[8]arene (C8A), at the air-water interface and in Langmuir-Blodgett (LB) film form, are analyzed as a function of the mixed composition. The strategy used to control the EHO aggregation has consisted of preparing mixed thin films containing EHO and C8A, in different ratios, at the air-water interface. Therefore, the increase of the C8A molar ratio in the mixed film diminishes the aggregation of the EHO molecules, although such an effect must be exclusively related to the dilution of the porphyrin. The reflection spectra of the mixed C8A-EHO films registered at the air-water interface, show a complex Soret band exhibiting splitting, hypochromicity and broadening features. Also, during the transfer process at high surface pressure, it has been shown that the EHO molecules are ejected from the C8A monolayer and only a fraction of porphyrin is transferred to the solid support, in spite of a complete transfer for the C8A matrix. The complex structure of the reflection spectra at the air-water interface, as well as the polarization dependence of the absorption spectra for the mixed LB films, indicate the existence of four different arrangements for the EHO hosted in the C8A matrix. The aggregate formation is governed by two factors: the attraction between the porphyrin rings which minimizes their separation, and the alkyl chain interactions, that is, hydrophobic effect and/or steric hindrance which determine and restrict the possible aggregation structures. By using the extended dipole model, the assignment of the spectral peaks observed to different EHO aggregates is shown.  相似文献   

13.
The behavior of monolayer films of free base 5,10,15,20-tetrapyridylporphinato (TPyP) and 5,10,15,20-tetrapyridylporphinato zinc(II) (ZnTPyP) on pure water, 0.1 M CdCl2, and 0.1 M CuCl2 subphases was investigated by surface pressure-area isotherms, specular X-ray reflectometry, and polarized total reflection X-ray absorption spectroscopy (PTRXAS). Surface pressure-area isotherms showed significant differences in the area per molecule on pure water compared to that on salt subphases, with a marked increase in the area observed on the salt solutions. This behavior was noted for both forms of the porphyrin and both salts investigated. Modeling of specular X-ray reflectometry data indicated that thinner and more electron dense layers on salt subphases best fit the observed profiles. These data suggest that the porphyrin macrocycle is oriented parallel to the interface on salt subphases and takes on a tilted conformation on pure water. In the case of ZnTPyP, PTRXAS was used to determine the orientation of the porphyrin moiety relative to the surface and to probe the coordination of the central Zn ion. In agreement with the pressure-area isotherms and reflectometry, the PTRXAS data indicate a change in orientation on the salt subphases.  相似文献   

14.
Docetaxel (DCT) is an antineoplastic drug for the treatment of a wide spectrum of cancers. DCT surface properties as well as miscibility studies with l-alpha-dipalmitoyl phosphatidylcholine (DPPC), which constitutes the main component of biological membranes, are comprehensively described in this contribution. Penetration studies have revealed that when DCT is injected under DPPC monolayers compressed to different surface pressures, it penetrates into the lipid monolayer promoting an increase in the surface pressure. DCT is a surface active molecule able to decrease the surface tension of water and to form insoluble films when spread on aqueous subphases. The maximum surface pressure reached after compression of a DCT Langmuir film was 13 mN/m. Miscibility of DPPC and DCT in Langmuir films has been studied by means of thermodynamic properties as well as by Brewster angle microscopy (BAM) analysis of the mixed films at the air-water interface, concluding that DPPC and DCT are miscible and they form non-ideally mixed monolayers at the air-water interface. Helmholtz energies of mixing revealed that no phase separation occurs. In addition, Helmholtz energies of mixing become more negative with decreasing areas per molecule, which suggests that the stability of the mixed monolayers increases as the monolayers become more condensed. Compressibility values together with BAM images indicate that DCT has a fluidizing effect on DPPC monolayers.  相似文献   

15.
In this work, mixed films of a tetra-cationic porphyrin, Ni(II)TMPyP, and an anionic phospholipid, DMPA, in molar ratio of 1:4, were formed at the air–water interface and transferred onto glass and optically transparent indium tin oxide (ITO) electrodes. Transmission spectroscopy (on glass and ITO) and cyclic voltammetry (on ITO) were used to infer the molecular organization and the electrochemical reduction of these LB films. Likewise, we compare the electrochemical reduction of the Ni(II)TMPyP in water solution with that in LB films. The porphyrin molecules in water solution show three two-electron reduction waves, which are related to the two-electron reduction of the central ring of the porphyrin and to the one-electron reductions of the four methyl–pyridyl groups of the molecule, respectively, while only two reversible one-electron reduction waves are observed in LB films corresponding to the reduction of the central ring of the porphyrin and to the Ni(II) to Ni(I) reduction, respectively.  相似文献   

16.
Low density lipoproteins (LDL) from egg yolk have a classical structure of lipoprotein with a core of neutral lipids surrounded by a monolayer of apoproteins and phospholipids. This structure collapses during adsorption and all constituents spread at the interface. To understand better the nature of the interactions between apoproteins and lipids at the interface, we have deposited LDL at an air-water interface and analysed the isotherms during their compression on a Langmuir trough. Then, these LDL films were studied by atomic force microscopy (AFM) imaging. To identify the protein and lipid structures, we imaged films before and after lipid solubilisation by butanol. To study the interactions in the LDL films, we have varied the pH, ionic strength and used simplified model systems. We also studied the correlation between observed structures and interfacial rheology of the film. The isotherms of interfacial LDL films were similar for pH 3 and 7, but their structures observed in AFM were different. At surface pressures below the transition corresponding to the demixion of apoprotein-neutral lipid complexes, the LDL film structure was not governed by electrostatic interactions. However, above this surface pressure transition (45mN/m), there was an effect of charge on this structure. Around the transition zone, the rheological properties of LDL films at pH 3 were different as a function of pH (viscous at pH 3 and visco-elastic at pH 7). So, the rheological properties of LDL films could be linked to the structures formed by apoproteins and observed in AFM.  相似文献   

17.
The self-assembly and supramolecular chirality of a dianionic tetrakis(4-sulfonatophenyl) porphyrin (TPPS) in the presence of ionic liquids, 1-alkyl-3-methylimidazolium tetrafluoroborate (alkyl = C(2), C(4) or C(6), abbreviated as C(2)mimBF(4), C(4)mimBF(4) and C(6)mimBF(4), respectively), have been investigated. It has been confirmed that mimBF(4) ionic liquids significantly promoted the J-aggregation of TPPS and the alkyl chain length in the imidazolium cation was closely related to the TPPS aggregation, the inducing ability of which decreased in the order of C(2), C(4) or C(6) in side chain. Interestingly, the formed TPPS assemblies with the ionic liquids showed supramolecular chirality although both TPPS and ionic liquids are achiral. It was found that the supramolecular chirality of the TPPS/IL system always appeared after the formation of the J aggregate. The dynamic process of the emergence of the handedness in the initial achiral system was monitored by the time-dependent CD spectra. A mechanism for the transformation of the conventional J-aggregate to the chiral J-aggregate was proposed. The work will lead to a deeper understanding of the chiral symmetry breaking in the supramolecular system.  相似文献   

18.
Smooth and nonswelling spherical silica particles with a diameter of 100 nm and an aminopropyl coating are soluble in water at pH 11, coagulate quickly at pH 3, and redissolve at pH 9. Electron microscopy as well as visible spectra of covalently attached porphyrins indicate the aggregation state of the particles. Long-chain alpha,omega-dicarboxylic acids with a terminal oligoethyleneglycol (=OEG)-amide group were attached in a second self-assembly step to the remaining amine groups around the porphyrins. Form-stable 2-nm wells were thus obtained and were characterized by fluorescence quenching experiments using the bottom porphyrin as a target. The one-dimensional diffusion of fitting quencher molecules along the 2-nm pathway took several minutes. Porphyrins with a diameter above 2 nm could not enter the form-stable gaps at all. Added tyrosine stuck irreversibly to the walls of the nanowells and prevented the entrance of quencher molecules, the OEG-headgroups fixated 2,6-diaminoanthraquinone. A ring of methylammonium groups was then fixed at the walls of the wells at a distance of 5 or 10 A with respect to the bottom porphyrin. 2,6-Disulfonatoanthraquinone was attached only loosely to this ring, but the exactly fitting manganese(III) meso-(tetraphenyl-4-sulfonato)porphyrinate (Mn(III) TPPS) was tightly bound. Transient fluorescence experiments showed a fast decay time of 0.2 ns for the bottom porphyrin, when the Mn(III) TPPS was fixated at a distance of 5 A. Two different dyes have thus been immobilized at a defined subnanometer distance in an aqueous medium.  相似文献   

19.
AOT/water/decane microemulsions have been used to entrap the water-soluble 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS4). Quasi-elastic light scattering technique has confirmed the confinement of the porphyrin and its various aggregates into the inner water pool. Various species have been detected as function of the size of the microemulsions, concentration of the porphyrin, pH, and aging of the solutions by using a combination of UV-vis absorption, steady fluorescence emission, fluorescence lifetime measurements, and time-resolved fluorescence anisotropy. Under neutral pH conditions, the porphyrin is present as the free base monomer (S414) in the inner water compartment, and it is free to rotate when the size of the droplet is large enough and the porphyrin concentration is low. On increasing the concentration and/or decreasing the microemulsion size, a H-dimer of the free base (S406) is prevalently formed. Aging both the S414 and S406 species leads to the formation of a new species (S424), which has been postulated as a H-type dimer of the diacid porphyrin. On decreasing the pH, the species S414 and S406 almost instantaneously convert into the diacid porphyrin, which is monomeric (S434). This latter is an intermediate in the eventual formation of J-aggregated TPPS4 (S490). A marked stability has been observed for the S424 species, which do not interconvert on changing the pH of the bulk aqueous phase.  相似文献   

20.
Interfacial ion-association adsorption and aggregation of a water-soluble porphyrin, tetrakis(4-sulfonatephenyl)porphyrin (TPPS) diacid, which was promoted by a cationic cetyltrimethylammonium ion (CTA(+)), was studied by second harmonic generation (SHG) spectroscopy. Comparing the interfacial SH spectrum with the transmission absorption spectrum of TPPS in the aqueous solution elucidated the aggregation behavior of TPPS at the heptane/water interface. The time-dependent SHG spectra for TPPS aggregation and the interfacial tension lowering in the presence of CTA(+) were discussed on the basis of an electrostatic adsorption model. Then, it was suggested that TPPS diacid was highly concentrated by the ion-association with CTA(+) at the interface, which was the intermediate state before the final aggregated state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号