首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Separation of colloidal particles from aqueous media by barrier filtration is typically dictated by sieving mechanisms. Here, we demonstrate that colloid filtration by porous membranes can be considerably augmented by suitably superimposing an alternating current (AC) electric field on the membrane. The combined steric-dielectrophoretic filtration can result in very high rejection of the particles compared to solely steric rejection.  相似文献   

2.
The removal of nitrate from mixed acid etchant (MAE) wastewater was investigated by neutralization, followed by reverse osmosis (RO) membrane filtration. The coating of a RO membrane was conducted using polyacrylic acid (PAA) in order to enhance the removal of nitrate from the MAE wastewater. The addition of KOH, for the neutralization of the MAE wastewater, was most effective in terms of solid–liquid separation. Double RO filtrations, with crossflow and stirred-flow units, were examined in terms of nitrate rejection and membrane permeability. The Donnan exclusion, due to change in the solution pH, played an important role in nitrate rejection. As a result, RO filtration, at a moderate acidic pH level (e.g., pH 4), provided greater nitrate rejection than that at neutral or alkaline pH levels. The Donnan effect was associated with acetic acid present in MAE wastewater, since it could deprotonate to acetate with a negative charge. Improvement in nitrate rejection occurred with the PAA coating of the original RO membrane. This is because of the enhanced electrostatic repulsion of the nitrate by the carboxyl groups on the coated membrane surface, although the flux declined with the PAA coatings. The effect of charge repulsion was more obvious in the second pass of RO filtration where the ionic strength was relatively low. The increase in nitrate rejection leveled off with a PAA dosage of 0.262 mg/cm2 of the membrane, so further coating beyond this level should be prevented.  相似文献   

3.
Separation of oil in water emulsion was carried out by crossflow microfiltration using 3 types of microporous glass tubular membrane with different pore size of 0.27, 0.75, and 1.47 μm. The effect of pore size on permeate flux and oil rejection was investigated and the filtration mechanisms were analyzed based on various types of filtration models.  相似文献   

4.
We have demonstrated that with a composite nanoporous ceramic membrane in a batch membrane cell it is technically feasible to switch off the trans-membrane hydrostatic pressure difference within tens of milliseconds. That enabled us to resolve practically the whole time evolution of transient filtration potential. Measurements of the latter have been complemented by measurements of steady-state salt rejection by the composite membrane and by measurements of the streaming potential and hydraulic permeability of membrane supports available separately. A theory has been developed in terms of network thermodynamics for the electrical response of a bilayer membrane to a pressure perturbation. In combination with the results of salt rejection measurements, from the time transients of filtration potential we could determine the ion transport numbers within the nanoporous layer. Besides that, from the dependence of steady-state salt rejection on the trans-membrane volume flow, we have determined the diffusion permeability of and the salt reflection coefficient in the nanoporous layer. This has enabled us to estimate the contributions of Donnan and non-Donnan mechanisms to the rejection of ions by the nanoporous membrane used in this study. It has been unexpectedly found that the Donnan exclusion played only a secondary role. Our hypothesis is that the non-Donnan exclusion of ions from the nanopores might be caused by changes in water properties in nanoconfinement. Proceeding from the results of steady-state filtration experiments with the membrane and the support, we also concluded that the nanoporous layer was imperfection-free and had a quite narrow pore size distribution, which made it a suitable object for fundamental studies of ion transfer mechanisms in nanopores.  相似文献   

5.
Herein,copper ion doped calcium alginate(Cu~(2+)/CaAlg) composite hydrogel filtration membranes were prepared by using natural polymer sodium alginate(NaAlg) as raw material.The thermal stability and structure of the composite membranes were characterized by thermogravimetric analysis and infrared spectroscopy.The mechanical strength,anti-fouling performance,hydrophilicity and filtration performance of the membrane were studied.The results show that Cu~(2+)/CaAlg hydrogel membrane has excelle nt mechanical properties and thermal stability.The anti-swelling ability of the membrane was greatly enhanced by doping Cu~(2+).After three alternate filtration cycles,the flux recovery rate of Cu~(2+)/CaAlg hydrogel membrane can still reach 85%,indicating that the membrane has good antipollution performance.When the operation pressure was 0.1 MPa,the rejection of coomassie brilliant blue G250 reached 99.8% with a flux of 46.3 L m ~2 h ~1,while the Na_2 SO_4 rejection was less than 10.0%.The Cu~(2+)/CaAlg membrane was recycled after 24 h in the filtration process,and its flux and rejection rate did not decrease significantly,indicating that the hydrogel membrane has long-term application potential.The Cu~(2+)/CaAlg membrane has a wide range of applications prospect in dye desalination,fine separation and biopharmaceutical technology fields.  相似文献   

6.
Dead-end filtration of colloids using hollow fibers has been analysed theoretically and experimentally. A mathematical model for constant flux filtration using dead-end hollow fiber membranes has been developed by combining the Hagen–Poiseuille equation, the (standard) filtration equation, and cake filtration theory of Petsev et al. [D.N. Petsev, V.M. Starov, I.B. Ivanov, Concentrated dispersions of charged colloidal particles: sedimentation, ultrafiltration and diffusion, Colloid Surf. A: Physicochem. Eng. Aspects, 81 (1993) 65–81.] to describe the time dependence of the filtration behavior of hollow fiber membranes experiencing particle deposition on their surface. Instead of using traditional constitutive equations, the resistance of the cake layer formed by the deposited colloids has been directly correlated to the cake structure. This structure is determined by application of a force balance on a particle in the cake layer combined with the assumption that an electrostatically stable cake layer of mono-sized particles would be ordered in a regular packing geometry of minimum energy. The developed model has been used to identify the relationship between the filtration behavior of the hollow fiber membrane and the particle properties, fiber size, and imposed average flux. Filtration experiments using polystyrene latex particles of relatively narrow size distribution with a single dead-end hollow fiber membrane demonstrate good consistency between experimental results and model prediction. The developed model has been used to simulate the distribution of the cake resistance, transmembrane pressure, and flux along the hollow fiber membrane and used to assess the effect of fiber size, particle size, zeta potential, and the average imposed flux on the suction pressure-time profiles, flux, and cake resistance distributions. These results provide new insights into the filtration behavior of the hollow fiber membrane under constant flux conditions.  相似文献   

7.
Particle deposition and fouling are critical factors governing the performance of microfiltration and ultrafiltration systems. Particle trajectories were evaluated by numerical integration of the Langevin equation, accounting for the combined effects of electrostatic repulsion, enhanced hydrodynamic drag, and Brownian diffusion. In the absence of Brownian forces, particles are unable to enter the membrane pores unless the drag associated with the filtration velocity can overcome the electrostatic repulsion. Brownian forces significantly alter this behavior, allowing some particles to enter the pore even at low filtration velocities. The average particle transmission, evaluated from the probability of having a particle enter the pore, increases with increasing filtration velocity due to the greater hydrodynamic drag force on the particle. These results provide important insights into particle behavior in membrane systems.  相似文献   

8.
The influence of the following parameters is discussed: oxidation state (Eh), hydrolysis (pH), solubility, complex formation, colloid formation, sorption and filtration effects. The oxidation states of the actinides in neutral aqueous media are plotted as a function of the redox potential. Hydrolysis, stability of 11 carbonato complexes, of humic acid complexes and solubilities of the hydroxides in the various oxidation states are considered. Mobility is investigated as a function of pH by paper chromatography. Partition of the actinides in groundwaters on the molecular fraction, the fine particle (colloid) fraction and the coarse particle fraction is determined as a function of pH by filtration and ultrafiltration. Sorption ratios are measured as function of pH, salt concentration and of EDTA concentration. When the groundwaters are passed through the sediments, mainly the coarse particle fractions are retained by size filtration. The pronounced influence of the redox potential on sorption is demonstrated for Np.  相似文献   

9.
A microscopic model of the layer formation and the cake growth at the crossflow microfiltration will be introduced. The model considers the hydrodynamic, adhesive and friction forces acting on a single particle during the filtration process. It can be shown that mainly the balance between the lift force and the drag force of the filtrate flow determines the layer formation at the membrane. Particle attachment to the layer is mostly an irreversible process. This is due to the large influence of the adhesive forces. The irreversibility of particle attachment was proved by experiments with monodisperse particles. The introduced model allows the prediction of the instationary crossflow filtration processes. The filtration rate and structure of the formed layer can be calculated. In the case of a filtration at constant transmembrane pressure the model calculation shows a good correspondence to the experimental results.  相似文献   

10.
A mass transfer model in case of ultrafiltration is proposed in the present study which is capable of predicting the permeate volumetric flux and rejection at different pressure, concentration and stirrer speed. The model is based on the steady state mass balance over the boundary layer, coupled with the results from irreversible thermodynamics. It first predicts the membrane surface and permeate concentrations — which are then utilized to calculate rejection. Permeate flux is then predicted using the result obtained from filtration theory. The model utilizes four parameters, namely, solvent permeability, solute permeability, reflection coefficient and specific cake resistance. These parameters along with the known values of the operating conditions and solution properties enable one to predict the flux as a function of time and rejection. The computed results are found to be in good agreement with the previously published data of Bhattacharjee and Bhattacharya during ultrafiltration of PEG-6000 by cellulose acetate membrane.  相似文献   

11.
A new class of microfiltration (MF) and ultrafiltration (UF) membranes has been developed. By placing latex particles onto the surface of a microporous substrate and stabilizing the porous array, voids are formed between the particles which provide narrowly distributed pores that serve as separation channels. The size of the interstitial voids in the array is governed by the diameter of the latex particle. This aqueous based technology has advantages relative to other membrane fabrication processes in terms of the high asymmetry of the membranes, the facile adjustment of pore sizes, and the ability to easily modify pore surfaces during the synthesis of particles.A number of approaches were examined for placement of particles and stabilization of latex composite membranes (LCMs). Filtration of particles with reactive surface groups that provide covalent linkages at the contact points in the particle array proved most effective in obtaining stable membranes. These membranes had narrow size distributions in both the UF and MF range and were capable of being cleaned and backflushed. The membranes were characterized in terms of gas permeabilities, pure water permeabilities and electron microscopy. The rejection properties of LCMs were also examined during filtration of monodispersed latex particles and a broadly dispersed dextran mixture.  相似文献   

12.
Ultrafiltration membranes based on polyamide and polysulfone modified by polyelectrolytes are produced. The effect of the nature of a polymer matrix and modifier on the rejection ability and diffusion permeability of membranes is studied. The effect of the asymmetry of transport properties, which is manifested at different orientations of membrane with respect to the flow of electrolyte, is quantitatively evaluated. It was demonstrated that the asymmetry of substance transport is more pronounced in the ultrafiltration regime than in the diffusion of sodium chloride solutions. A mathematical model that describes the filtration of binary electrolyte solutions on partially charged two-layer membranes is proposed and the corresponding boundary-value problem is solved analytically. The qualitative correspondence between theoretical calculations and experimental data on the asymmetry effect of the rejection ability of two-layer system is revealed.  相似文献   

13.
Design parameters for rotating cylindrical filtration   总被引:2,自引:0,他引:2  
Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions.  相似文献   

14.
Particle fouling mechanisms in “dead-end” microfiltration is analyzed using blocking models. The blocking index and resistance coefficient of the models during microfiltration are calculated under various conditions. The major factors affecting these model parameters, such as the filtration rate, the amount of particles simultaneously arriving at the membrane surface and particle accumulation, are discussed thoroughly. Instead of the four different blocking models previously proposed, a membrane blocking chart is established for relating the blocking index, filtration rate, and particle accumulation. Blocking index variation during microfiltration can be interpreted using this chart. Membrane blocking occurs during the initial filtration periods until the condition reaches a critical value; then, the blocking index suddenly drops to zero by following up the cake filtration model. Once the normalized resistance coefficient is regressed to an exponential function of the blocking index under a wide range of conditions, the blocking models can be used to quantitatively explain filtration flux attenuation by solving a unitary mathematical equation. Comparing the experimental filtration rates obtained under different conditions with the simulated results reveals a good agreement between them and demonstrates the reliability of this analysis method.  相似文献   

15.
In an effort to further increase the understanding of crossflow filtration, experiments were performed on the influence of particle shape on permeation flux. Five particles of similar density and size distribution but of different shapes were used to test the influence of particle shape, while varying experimental parameters such as crossflow velocity, filtration pressure, solids concentration, membrane morphology and pore size. Particle shape was found to influence the equilibrium flux by the structure of the cake layer formed. Irregularly shaped particles such as branched carbon particles provided higher fluxes due to the high voidage cakes. More regularly shaped particles such as glass spheres resulted in lower fluxes. Platelet aluminium particles had relatively high filtration rates due to the gaps between the plates. The effects of the other experimental parameters typically showed results consistent with previous publications. Using the measured cake mass, a theoretical model based on D'Arcy and Kozeny gave reliable filtration flux compared to the experimental results.  相似文献   

16.
Electrospun polyacrylonitrile (PAN) nanofibrous scaffold was used as a mid-layer support in a new kind of high flux thin film nanofibrous composite (TFNC) membranes for nanofiltration (NF) applications. The top barrier layer was produced by interfacial polymerization of polyamides containing different ratios of piperazine and bipiperidine. The filtration performance (i.e., permeate flux and rejection) of TFNC membranes based on electrospun PAN nanofibrous scaffold was compared with those of conventional thin film composite (TFC) membranes consisting of (1) a commercial PAN ultrafiltration (UF) support with the same barrier layer coating and (2) two kinds of commercial NF membranes (i.e., NF90 and NF270 from Dow Filmtec). The nanofiltration test was carried out by using a divalent salt solution (MgSO4, 2000 ppm) and a cross-flow filtration cell. The results indicated that TFNC membranes exhibited over 2.4 times more permeate flux than TFC membranes with the same chemical compositions, while maintaining the same rejection rate (ca. 98%). In addition, the permeate flux of hand-cast TFNC membranes was about 38% higher than commercial NF270 membrane with the similar rejection rate.  相似文献   

17.
Specific flux data were obtained during the transient period of flux decline in laminar crossflow filtration. Effects of hydrodynamics on cake parameters such as specific resistance, mass and particle size distribution were studied experimentally. An evaluation of crossflow filtration models suggests that a model based on shear-induced diffusion [1] is a better predictor of specific flux decline than a particle adhesion model [2]. Even for relatively narrowly distributed suspensions, polydispersivity complicates analyses in a manner that is not adequately addressed by these models. Changes in experimental specific cake resistances with module hydrodynamics coupled to the inadequacy of these models for accurately predicting time-dependent specific flux profiles, cake specific resistances, and mass suggests that cake morphology is a key variable that needs to be incorporated in future modeling efforts.  相似文献   

18.
The effect of phosphate ion on the filtration characteristics of solids generated in a high level liquid waste was experimentally examined. Addition of phosphate ion into the simulated HLLW induced the formation of phosphate such as zirconium phosphate and phosphomolybdic acid. The filtration rate of zirconium phosphate abruptly dropped in the midst of filtration because of a gel-cake formation on the filter surface. The denitration of the simulated HLLW contained zirconium phosphate improved the filterability of this gelatinous solid. The filtration rates of denitrated HLLW decreased with increase of the phosphate ion concentration, since the solids formed by denitration had irregular particle size and configuration in the simulated HLLW with phosphate ion. To increase the filtration rate of denitrated HLLW, a solid suspension filtration tester was designed. The solid-suspension accelerated the filtration rate only in the simulated HLLW with more than 1500 ppm phosphate ion concentration. Under this condition, the simple agitation can easily suspend the constituent solids of filter cake in the solution and a much higher filtration rate can be obtained because the filter cake is continuously swept from the filter surface by rotation of propellers.  相似文献   

19.
A lot of experiments were investigated to show the behaviour of an ultrafiltration membrane during the filtration of pure salt solutions. What happens when the filtered solution contains several ions?

In this paper, results are given concerning the filtration of mixtures of two salts solutions, salts with a common anion: NaCl + CaCl2 and Na2SO4 + CaSO4.

The surface charge of the membrane is characterized by streaming potential measurements and rejection rates by means of chromatography. These results confirm the adsorption of divalent ions on the surface and a good selectivity for divalent cations.  相似文献   


20.
Shen Y  Elele E  Khusid B 《Electrophoresis》2011,32(18):2559-2568
A novel concept of an alternating current (AC) dielectrophoretic filter with a three-dimensional electrode array is presented. A filter is constructed by winding into layers around the core tube two sheets of woven metal wire-mesh with several sheets of woven insulating wire-mesh sandwiched in between. Contrary to conventional dielectrophoretic devices, the proposed design of electrodes generates a high-gradient field over a large working volume by applying several hundred volts at a standard frequency of 60?Hz. The operating principle of filtration is based on our recently developed method of AC dielectrophoretic gating for microfluidics. The filtration efficiency is expressed in terms of two non-dimensional parameters, which describe the combined influence of the particle polarizability and size, the oil viscosity and flow rate, and the field gradient on the particle captivity. The proof-of-concept is tested by measuring the single-pass performance of two filters on positively polarized particles dispersed in engine oil: spherical glass beads, fused aluminum oxide powder, and silicon metal powder, all smaller than the mesh opening. The results obtained are used to consider the potential of using AC dielectrophoretic filtration and provide critical design guidelines for the development of a filter based on the retention capability of challenge particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号