首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In the present experimental investigation a novel nanoherbal gel containing iron nanoparticles and extract from Cuscuta reflexa was used as a drug. Synthesized nanoherbal increased the drug solubility and penetration in the skin and is useful as a novel delivery system for better anti-warts activity. The experimental work includes preformulation studies of drug (Cuscuta reflexa) which include organoleptic properties, identification and solubility studies. Spectroscopy characterization was performed for identification of drug. The iron nanoparticles were evaluated for their characteristic such as appearance, viscosity and odor. Various formulations F1–F5 was prepared using different formulation variables based on experiment design. The result showed that the formulation F-5 provide the better release using 5.5 pH acetate buffer and at 37 °C temperature for anti-warts activity. The maximum drug release through synthesized nanoherbal gel was found to be 91.3%. Nanoherbal formulation was evaluated for physical appearance, pH, consistency, spreadibility and drug content. Stability study of formulation F5 was carried out for a period of 3 months to determine the percentage release and the results revealed that the formulation is stable under varied humidity and temperature condition and there was no major change in the amount of drug release during the storage condition, which reflected the stability of F5 formulation.  相似文献   

2.
A dry powder aerosol drug delivery system was designed with both nano- and microstructure to maximize the protein loading via surface adsorption and to facilitate delivery to the deep lung, respectively. Ovalbumin was employed as a model protein to adsorb to and controllably flocculate DOTAP-coated PLG nanoparticles into "nanoclusters" possessing low density microstructure. The mechanism of nanoparticle flocculation was probed by evaluating the effects of ionic strength, shear force, and protein concentration on the geometric and aerodynamic diameters of the nanoclusters as well as the protein adsorption efficiency. Salt ions were found to compete with ovalbumin adsorption to nanoparticles and facilitate flocculation; therefore, formulation of nanoclusters for inhaled drug delivery may require the lowest possible ionic strength to maximize protein adsorption. Additional factors, such as shear force and total protein-particle concentration can be altered to optimize nanocluster size, suggesting the possibility of regional lung delivery. Immediate release of ovalbumin was observed, and native protein structure upon release was confirmed by circular dichroism and fluorescence spectroscopy studies. Controlled flocculation of nanoparticles may provide a useful alternative to spray drying when formulating dry powders for pulmonary or nasal administration of protein therapeutics or antigens.  相似文献   

3.
Mesoporous silica nanoparticles have been widely investigated as drug delivery systems. The present study evaluated physical stability of indomethacin loaded mesoporous MCM-41 nanoparticles. The size, polydispersity index, zeta-potential, and drug loading degree of nanoparticles were determined immediately after their preparation and after 6 months storage at 25°C in dry state. The results showed insignificant changes in these parameters, suggesting high stability of nanoparticles and loaded indomethacin. The nanoparticles were formulated in tablets by direct compression. The low friability indicated good resistance during handling and storage. The formulation of the nanoparticles into tablets decreased the initial release of indomethacin.  相似文献   

4.
Tryptanthrin is an ancient medicine which recently was also found to have a function of downregulating multidrug resistance (MDR). However, tryptanthrin is insoluble in water, which limits its availability for delivery into cancer cells. There is a need to improve delivery systems to increase the inhibition of MDR. The aim of this study was to employ nanoparticles encapsulating tryptanthrin to improve the delivery and promote the sustained release of this drug. The approach was to encapsulate tryptanthrin in various nanoparticles, including solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and lipid emulsions (LEs). We compared the particle size and zeta potential of these nanoparticles, and evaluated the partitioning behavior of tryptanthrin in them. We also determined the release kinetics of tryptanthrin from these nanoparticles. Moreover, cellular cytotoxicity toward and uptake of tryptanthrin-loaded nanoparticles by human breast cancer cells were determined. We found that the mean particle size of NLCs was lower, and the partition coefficient was higher than those of SLNs, and an increased tryptanthrin release rate was found with the NLC delivery system. NLCs achieved the sustained release of tryptanthrin without an initial burst. In particular, the NLC-C formulation, composed of a mixture of Compritol and squalene as the core materials, showed the highest release rate and cytotoxic effect. Confocal laser scanning microscopic images confirmed drug internalization into cells which enhanced the endocytosis of the particles. These results suggested that NLCs can potentially be exploited as a drug carrier for topical or intravenous use in the future.  相似文献   

5.
The main objective of this work was to develop antifungal matrix tablet for vaginal applications using mucoadhesive thiolated polymer. Econazole nitrate (EN) and miconazole nitrate (MN) were used as antifungal drugs to prepare the vaginal tablet formulations. Thiolated poly(acrylic acid)-cysteine (PAA-Cys) conjugate was synthesized by the covalent attachment of L-cysteine to PAA with the formation of amide bonds between the primary amino group of L-cysteine and the carboxylic acid group of the polymer. Vaginal mucoadhesive matrix tablets were prepared by direct compression technique. The investigation focused on the influence of modified polymer on water uptake behavior, mucoadhesive property and release rate of drug. Thiolated polymer increased the water uptake ratio and mucoadhesive property of the formulations. A new simple dissolution technique was developed to simulate the vaginal environment for the evaluation of release behavior of vaginal tablets. In this technique, daily production amount and rate of the vaginal fluid was used without any rotational movement. The drug release was found to be slower from PAA-Cys compared to that from PAA formulations. The similarity study results confirmed that the difference in particle size of EN and MN did not affect their release profile. The release process was described by plotting the fraction released drug versus time and n fitting data to the simple exponential model: M(t)/M(∞)=kt(n). The release kinetics were determined as Super Case II for all the formulations prepared with PAA or PAA-Cys. According to these results the mucoadhesive vaginal tablet formulations prepared with PAA-Cys represent good example for delivery systems which prolong the residence time of drugs at the vaginal mucosal surface.  相似文献   

6.
Colon-specific drug delivery systems (CDDS) can improve the bioavailability of drug through the oral route. A novel formulation for oral administration using pH-enzyme Di-dependent chitosan mcirospheres (MS) and 5-Fu as a model drug has been investigated for colon-specific drug delivery by the emulsification/chemical cross-linking and coating technique, respectively. The influence of polymer concentration, ratio of drug to polymer, the amount of crosslinking agent and the stirring speed on the encapsulation efficiency, particle size in microspheres were evaluated. The best formulation was optimized by an orthogonal design. Drug release studies under conditions mimicking stomach to colon transit have shown that the drug was protected from being released in the physiological environment of the stomach and small intestine. The plasma concentrations of 5-Fu after oral administration of coated chitosan MS to rats were determined and compared with that of 5-Fu solution. The in vivo pharmacokinetics study of 5-Fu loaded pH-enzyme Di-dependent chitosan MS showed sustained plasma 5-Fu concentration-time profile. The in vitro release correlated well with the pharmacokinetics profile. The results clearly demonstrated that the pH-enzyme Di-dependent chitosan MS is potential system for colon-specific drug delivery of 5-Fu.  相似文献   

7.
A fullerene-paclitaxel conjugate has been synthesized as a slow-release drug for aerosol liposome delivery of paclitaxel for lung cancer therapy. The conjugate was designed to release paclitaxel via enzymatic hydrolysis and subsequently has shown a half-life of release of 80 min in bovine plasma. A liposome formulation of the conjugate has been prepared using dilauroylphosphatidylcholine (DLPC), and its IC50 is virtually identical to the IC50 for a paclitaxel-DLPC formulation in human epithelial lung carcinoma A549 cells. With both clinically relevant kinetics of hydrolysis and significant cytotoxicity in tissue culture, the conjugate holds promise for enhanced therapeutic efficacy of paclitaxel in vivo.  相似文献   

8.
The objective of the present study was to formulate naproxen-eudragit RS100 nanoparticles and investigate the physicochemical characteristics of the prepared nanoparticles. The nanoparticles of naproxen with eudragit RS100 were formulated using the solvent evaporation/extraction technique (the single emulsion technique). The effect of several process parameters, i.e., drug/polymer ratio, aqueous phase volume and speed of homogenization were considered on the size of the nanoformulations. The physicochemical characteristics of nanoparticles were studied applying particle size analysis, differential scanning calorimetry, X-ray crystallography, Fourier transform infrared spectroscopy and scanning electron microscopy. The release rate of naproxen from various drug/polymer nanoparticles was investigated as well. All the prepared formulations using eudragit RS100 resulted in nano-range size particles with relative spherical smooth morphology. The nanoparticles of naproxen-eudragit RS100 displayed lower crystallinity. The intermolecular interaction between naproxen and eudragit RS100 was detected in the FT-IR spectrum of the nanoparticles. All the nanoparticles displayed a slowed release pattern with the reduced burst release in comparison with the intact drug powder and physical mixtures of drug and polymer. According of these findings, formulation of the naproxen-eudragit RS100 nanoparticles was able to improve the physicochemical characteristics of the drug and possibly will increase the anti-inflammatory effects of drug following its ocular or intra-joint administration.  相似文献   

9.
The goal of this research was to develop, fabricate and analyze polymeric nanoparticles for the administration of methotrexate (MTX). Linseed mucilage and chitosan nanoparticles (NPs) were prepared using a slightly modified polyelectrolyte complex (PEC) method. The size, shape, and encapsulation effectiveness of the resultant nanoparticles were measured. MTX release profiles at gastrointestinal pH (1.2 and 7.4) and tumor pH (5.5) were examined to determine the targeted potential of NPs as pH-responsive nanocarriers. Zeta analysis showed that nanoparticles prepared by PEC have a size range of 192.1 nm to 246 nm, and PDI was 0.3 of the optimized formulation, which showed homogenous nature of prepared nanoparticles formulation. The findings demonstrated that NPs have a low polydispersity index and a positive zeta potential (PDI). The in-vitro release of the drug indicated a pH-dependent, sustained drug release up to 24 h. Blank LSMCSNPs had almost no in-vivo cytotoxicity for 14 days, while optimum MTX loaded NPs had strong antitumor effects on HepG2 and MCF-7 cells as measured by the MTT assay. Cell apoptosis induction was also checked and MCF-7 cells treated with MTX-LSMCSNPs had a significantly greater rate of apoptosis (21.2 %) than those treated with MTX alone (14.14 %). The findings show that LSMCSNPs could be a potential delivery mechanism for methotrexate to cancer cells in a secure, steady, and ideally controlled manner to improve therapeutic outcomes.  相似文献   

10.
Multi-functional nanoparticles hold great promise for the effective treatment of many diseases. Zidovudine a commonly used anti-HIV drug, requires a delivery system for more effective treatment of AIDS. The present study focuses on the development of anti-viral drug-loaded hybrid nanoparticles (LPNs) of lipid and polymer consisting of carboxy methyl cellulose—zidovudine (AZT) core enclosed by a compritol (Comp)-polyethylene glycol shell. The characterization of drug loaded LPNs was done using TEM, DLS and FT-IR analysis. The drug loading efficiency, drug release, blood compatibility, MTT assay and cell uptake studies were carried out using the LPNs. The synthesized nanoparticles exhibited core–shell morphology with an average size of 161.65 ± 44.06 nm; the LPN also demonstrated 82% drug encapsulation efficiency with slow drug release behaviour. The hybrid nanoparticles were found to be blood compatible and non toxic. The rhodamine-labeled hybrid nanoparticles were also found to effectively enter the brain cells. The novel hybrid drug delivery system shows controlled drug release, biocompatibility and high drug loading efficiency. These LPNs obtained from natural polymers can provide an excellent platform for designing systems for targeted drug delivery.  相似文献   

11.
In the present research, we have investigated a drug delivery system based on the pH‐responsive behaviors of zein colloidal nanoparticles coated with sodium caseinate (SC) and poly ethylene imine (PEI). These systematically designed nanoparticles were used as nanocarriers for encapsulation of ellipticine (EPT), as an anticancer drug. SC and PEI coatings were applied through electrostatic adsorption, leading to the increased size and improved polydispersity index of nanoparticles as well as sustained release of drug. Physicochemical characteristics such as hydrodynamic diameter, size distribution, zeta potential and morphology of nanoparticles prepared using different formulations and conditions were also determined. Based on the results, EPT was encapsulated into the prepared nanoparticles with a high drug loading capacity (5.06%) and encapsulation efficiency (94.8%) under optimal conditions. in vitro experiments demonstrated that the release of EPT from zein‐based nanoparticles was pH sensitive. When the pH level decreased from 7.4 to 5.5, the rate of drug release was considerably enhanced. The mechanism of pH‐responsive complexation in the drug encapsulation and release processes was extensively investigated. The pH‐dependent electrostatic interactions and drug state were hypothesized to affect the release profiles. Compared to the EPT‐loaded zein/PEI nanoparticles, the EPT‐loaded zein/SC nanoparticles exhibited a better drug sustained‐release profile, with a smaller initial burst release and longer release period. According to the results of in vitro cytotoxicity experiments, drug‐free nanoparticles were associated with a negligible cytotoxicity, whereas the EPT‐loaded nanoparticles displayed a high toxicity for the cancer cell line, A549. Our findings indicate that these pH‐sensitive protein‐based nanoparticles can be used as novel nanotherapeutic tools and potential antineoplastic drug carriers for cancer chemotherapy with controlled release.  相似文献   

12.
In this study, we have reported novel thermosensitive nanoparticles formulated by an emulsion-solvent evaporation technique using acetaminophen (AAP) as a model drug. The high entrapment efficiency of nanoparticles was 68.56%, particle size about 240.6 nm and zeta potential ?27 mV. Furthermore, the drug release was also investigated both at 37°C and 42°C, respectively. The goal of our study was to obtain a targeted drug delivery system, exploiting the temperature-sensitive behavior. In contrary to normal temperature (37°C), the release rate of AAP was found to noticeably increase at high temperature (42°C) with a larger cumulative amount of drug released. In this way, it would lead to production of nanoparticles having a high thermosensitive behavior on drug release. Thus, this new strategy has the potential to control drug release at the diseased site for targeted drug delivery system (TDDS) with positive temperature-controlled.  相似文献   

13.
This study aims at the formulation of curcumin with biodegradable thermoresponsive chitosan-g-poly (N-vinylcaprolactam) nanoparticles (TRC-NPs) for cancer drug delivery. The spherical curcumin-loaded nanoparticles of size 220 nm were characterized, and the biological properties were studied using flow cytometry and cytotoxicity by MTT assay. The in vitro drug release was higher at above LCST compared to that at below LCST. TRC-NPs in the concentration range of 100-1000 μg/mL were non-toxic to an array of cell lines. The cellular localization of the curcumin-loaded TRC-NPs was confirmed from green fluorescence inside the cells. The time-dependent curcumin uptake by the cells was quantified by UV spectrophotometer. Curcumin-loaded TRC-NPs showed specific toxicity to cancer cells at above their LCST. Flow cytometric analysis showed increased apoptosis on PC3 compared to L929 by curcumin-loaded TRC-NPs. These results indicate that novel curcumin-loaded TRC-NPs could be a promising candidate for cancer drug delivery.  相似文献   

14.
Triptolide (TP), which has immunosuppressive effect, anti-neoplastic activity, anti-fertility function and severe toxicities on digestive, urogenital, blood circulatory system, was used as a model drug in this study. TP-loaded poly (d,l-lactic acid) (PLA) nanoparticles were prepared by the modified spontaneous emulsification solvent diffusion method (modified-SESD method). Dynamic light scattering system (DLS), transmission electron microscope (TEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC), X-ray powder diffractometry and Fourier transform infra-red spectroscopy (FT-IR) were employed to characterize the nanoparticles fabricated for size and size distribution, surface morphology, the physical state of drug in nanoparticles, and the interaction between the drug and polymer. Encapsulation efficiency (EE) and the in vitro release of TP in nanoparticles were measured by the reverse phase high-performance liquid chromatography (RP-HPLC). The produced nanoparticles exhibited a narrow size distribution with a mean size of approximately 150 nm and polydispersity index of 0.088. The morphology of the nanoparticles exhibited a fine spherical shape with smooth surfaces without aggregation or adhesion. TP-entrapped in nanoparticles was found in the form of amorphous or semicrystalline. It was found that a weak interaction existed between the drug and polymer. In all experiments, more than 65% of EE were obtained. The in vitro release profile of TP from nanoparticles exhibited a typical biphasic release phenomenon, namely initial burst release and consequently sustained release. In this case, the particle size played an important role for the drug release. The modified-SESD method was a potential and advantage method to produce an ideal polymer nanoparticles for drug delivery system (DDS).  相似文献   

15.
Tamoxifen citrate (TMC), a non-steroidal antiestrogen drug used for the treatment of breast cancer, was loaded in a block copolymer of maltoheptaose-b-polystyrene (MH-b-PS) nanoparticles, a potential drug delivery system to optimize oral chemotherapy. The nanoparticles were obtained from self-assembly of MH-b-PS using the standard and reverse nanoprecipitation methods. The MH-b-PS@TMC nanoparticles were characterized by their physicochemical properties, morphology, drug loading and encapsulation efficiency, and release kinetic profile in simulated intestinal fluid (pH 7.4). Finally, their cytotoxicity towards the human breast carcinoma MCF-7 cell line was assessed. The standard nanoprecipitation method proved to be more efficient than reverse nanoprecipitation to produce nanoparticles with small size and narrow particle size distribution. Moreover, tamoxifen-loaded nanoparticles displayed spherical morphology, a positive zeta potential and high drug content (238.6 ± 6.8 µg mL−1) and encapsulation efficiency (80.9 ± 0.4 %). In vitro drug release kinetics showed a burst release at early time points, followed by a sustained release profile controlled by diffusion. MH-b-PS@TMC nanoparticles showed higher cytotoxicity towards MCF-7 cells than free tamoxifen citrate, confirming their effectiveness as a delivery system for administration of lipophilic anticancer drugs.  相似文献   

16.
The aim of the present study was to develop controlled drug delivery systems based on nanotechnology. Two different nanocarriers were selected, chitosan-alginate nanoparticles as hydrophilic and solid lipid nanoparticles as lipophilic carriers. Nanoparticles were prepared and characterized by evaluating particle size, zeta potential, SEM pictures, DSC thermograms, percentage of drug loading efficiency, and drug release profile. The particle size of SLNs and Chi/Alg nanoparticles was 291 ± 5 and 520 ± 16. Drug loading efficiency of Chi/Alg and SLN particles were 68.98 ± 5.5% and 88 ± 4.5%. The drug release was sustained with chitosan-alginate system for about 45 hours whereas for SLNs >98% of the drug was released in 2 hours. Release profile did not change significantly after freeze drying of particles using cryoprotector. Results suggest that under in vitro condition chitosan/alginate systems can act as promising carriers for ciprofloxacin and may be used as an alternative system in sustained delivery of ciprofloxacin.  相似文献   

17.
In this paper, a new drug delivery system was designed using magnetic Fe3O4/carboxymethylchitosan nanoparticles (Fe3O4/CMCS NPs) as carrier and rapamycin (Rapa) as the antitumor drug. The process and formulation variables of Fe3O4/CMCS-Rapa NPs were optimized using response surface methodology (RSM) with a three-level, three-factor Box-Behnken design (BBD). The independent variables were the mass ratio of Fe3O4/CMCS: Rapa, W/O phase ratio and stirring rate; dependent variables were drug loading content and entrapment efficiency. Mathematical equations and response surface plots were used to relate the dependent and independent variables. The optimized formulation was characterized by TEM, FT-IR, and in vitro drug release. Results for mean particle size, drug loading content, entrapment efficiency and in vitro drug release of Fe3O4/CMCS-Rapa were found to be of 30 ± 2 nm, 6.32% ± 3.36%, 62.9% ± 2.30%, and 65.35% ± 2.46% at pH 7.4 after 70 h, respectively; also, they possess magnetism with a saturation magnetization of 67.1 emu/g, negligible coercivity and remanence at room temperature. Also the effect of magnetic targeted nanoparticles on the proliferation of human hepatoma cell line HepG2 in vitro was investigated. The results from MTT assays showed that the Fe3O4/CMCS-Rapa nanoparticles could effectively inhibit the proliferation of HepG2 cells, which displayed time or concentration-dependent manner. All these results indicated that the nanoparticles had the potential to be used as a novel drug carrier system.  相似文献   

18.
The aim of this work was to formulate the lorazepam loaded poly(lactic-co-glycolic) acid (PLGA) nanoparticles by optimization of different preparation variables using 23 factorial design. The effect of three independent factors, the amount of polymer, concentration of the stabilizer and volume of organic solvent was investigated on two dependent responses, i.e., particle size and % drug entrapment efficiency. By using PLGA as polymer, PVA as a stabilizer and dimethyl sulfoxide as organic solvent lorazepam loaded PLGA nanoparticles were successfully developed through modified nanoprecipitation method. FTIR and DSC studies were carried out to examine the interaction between the excipients used and to explore the nature of the drug, the formulation and the nature of drug in the formulations. These nanoparticles were characterized for particle size, shape, zeta potential, % drug entrapment efficiency, % process yield and in vitro drug release behavior. In vitro evaluation showed particles size between 161.0 ± 5.4 and 231.9 ± 4.9 nm, % drug entrapment efficiency of formulations was in the range of 60.43 ± 5.8 to 75.40 ± 1.5, % process yield at 68.34 ± 2.3 to 81.55 ± 1.3 was achieved and in vitro drug release for these formulations was in the range of 49.2 to 54.6%. Different kinetics models, such as zero order, first order, Higuchi model, Hixson-Crowell model and Korsmeyer- Peppas model were used to analyze the in vitro drug release data. Preferred formulation showed particle size of 161.0 ± 5.4 nm, PDI as 0.367 ± 0.014,–25.2 mV zeta potential, drug entrapment efficiency as 64.58 ± 3.6% and 72.48 ± 2.5% process yield. TEM results showed that these nanoparticles were spherical in shape, and follow the Korsmeyer-Peppas model with a release exponent value of n = 0.658.  相似文献   

19.
The aim of this investigation was to develop 5-fluorouracil (5-FU) loaded chitosan nanoparticles (CH-DNPs) for ophthalmic delivery. CH-DNPs were fabricated by ionotropic gelation mechanism using chitosan (CH) and a polyanion (TPP). The nanoparticles were smooth and spherical, confirmed by scanning electron microscopy (SEM) and atomic force microscope (AFM). CH/TPP mass ratio and TPP significantly changed the particles size morphology and encapsulation efficiency. The nanoparticles size ranged from approximately 114 to 192 nm and had a positive zeta potential (30±4 mV). The encapsulation efficiency, loading capacity and recovery of DNPs were 8.12-34.32%, 3.14-15.24% and 24.22 to 67% respectively. Physical characterization was done by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD). No interaction was observed in between drug and polymer and crystallinity of drug was not changed in drug loaded nanoparticles. In-vitro release study of DNPs showed diffusion controlled release. Bioavailability study of batch CS9 was studied in rabbit eye and compare to 5-FU solution. 5-FU level was significantly higher in aqueous humor of rabbit eye. Ocular tolerance was studied in the eye of New Zealand rabbits and tested formulation was non-irritant with no sign of inflammation.  相似文献   

20.
Solid-lipid nanoparticles (SLNs) are an interesting nanoparticulate delivery system. The present work was carried out with the aim to develop a prolonged release solid-lipid nanoparticulate system for the drug using aceclofenac. Aceclofenac-loaded solid-lipid nanoparticles (ACSLNs) was prepared by hot high pressure homogenization technique. Tripalmitin was used as the lipid core. Surfactants (Poloxamer 188, Tween 80, and soya lecithin) and co-surfactant (sodium tauro glycholate) were used in the formulations. The prepared ACSLN formulations were characterized for encapsulation efficiency (EE), photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), and x-ray diffraction (XRD). From these studies, mean particle diameter of the formulation prepared with combination of surfactants (Poloxmer 188 and Tween 80) was about 200 nm with spherical morphology and amorphous nature. Higher EE was obtained with SLNs prepared using combination of soya lecithin and poloxmer 188. The organization and distribution of the ingredients in the nanoparticulate system were studied by differential scanning calorimetry (DSC) and the results showed that the drug is incorporated into the solid matrix. The prepared formulations demonstrated favorable in vitro prolonged release characteristics. Experimental in vitro release data were substituted in available mathematical models to establish the release kinetics of ACSLNs and it was found to follow first-order kinetics and Higuchi diffusion mechanism. Our results suggest that these SLN formulations could constitute a promising approach for the drug delivery of aceclofenac.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号