首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perpendicular electric transport in Fe/InP/Fe heterostructures with different terminations is investigated within the relativistic spin-polarized version of the screened Korringa–Kohn–Rostoker method and the Kubo–Greenwood formula, and compared to a Landauer-like approach. Both methods show that the magnetoresistance becomes constant with increasing spacer thickness.  相似文献   

2.
3.
We have studied superconducting and magnetic properties of sputtered Fe/Pb/Fe-trilayers. For a fixed Pb thickness and with changing Fe thickness, , a monotonic decrease of the superconducting transition temperature was observed. Magnetization measurements clearly showed that Fe remains ferromagnetic down to the monolayer range. A quantitative comparison of with the theory of pair breaking by the exchange field reveals that the observed -suppression by the ferromagnetic Fe-layer is much weaker than expected. Possible reasons for the reduced -suppression in this system are discussed. Received: 30 June 1997 / Revised: 20 August 1997 / Accepted: 16 December 1997  相似文献   

4.
The magnetic properties of Fe/Zn/Fe trilayers have been studied by ferromagnetic resonance and magnetization measurements. These measurements have been used to investigate the magnetic anisotropy of the iron layers and the magnetic coupling across the semiconductor spacer. The angular dependence of the resonance spectra has been measured in-plane and out-of-plane in order to deduce magnetic anisotropy constants of the samples. Experimental data were fitted by using an energy-density expression that includes bulk cubic anisotropy, growth-induced uniaxial in-plane anisotropy and perpendicular-surface anisotropy terms. A small ferromagnetic coupling is observed in the trilayers with spacer thickness up to .  相似文献   

5.
We report here on changes in magnetism and microstructure when implanting, at 92 or 300 K, up to 5 × 1015 Au26+-ions cm−2 of 350 MeV into natFe(45 nm)/57Fe(20 nm)/Si trilayers. This choice of ions and energy allowed to test the irradiation effects in the regime of pure electronic stopping. The samples were analysed before and after irradiation by Rutherford back-scattering spectroscopy, X-ray diffraction, conversion electron Mössbauer spectroscopy, and magneto-optical Kerr effect. Up to 1 × 1015 ions cm−2, there was interface broadening at a mixing rate of Δσ2/Φ = 55(5) nm4, followed by full Fe-Si inter-diffusion. The Mössbauer spectra revealed fractions of α-Fe and amorphous ferromagnetic and paramagnetic iron silicides, but no crystalline Fe-Si phase. The magnetic remanence in the as-deposited Fe-layer showed small components of uniaxial and four-fold magnetization. For increasing ion fluence, the component with four-fold symmetry grew at the expense of the uniaxial component. For the highest fluences, an isotropic magnetization was found.  相似文献   

6.
Results of a study of magnetic and magnetooptical properties of Fe/Pt double-layer and Fe/Pt/Fe three-layer thin-film magnetic structures are presented. A strong effect of the Pt layer on magnetic properties of the studied samples was revealed. It was established that the saturation field of three-layer magnetic structures has an oscillating magnitude with varying Pt layer thickness, and the oscillation period is a function of the Fe layer thickness. The data obtained are explained by the presence of exchange interaction between the Fe layers via the Pt layer. A strong effect of Pt on spectral dependences of the equatorial Kerr effect in the thin-film structures under study is revealed.  相似文献   

7.
The magnetization of Fe/Si/Fe trilayer films is experimentally investigated at low temperatures. It is found that the shape of the magnetization curves measured at T<30 K depends on the thermomagnetic state of the system. The possible mechanisms of the interaction between iron layers are discussed.  相似文献   

8.
Ultrathin epitaxial Fe films on Cu(1 0 0) with perpendicular magnetization have been used as templates for the preparation of FCC Fe/Cu/Fe trilayers. The magnetic anisotropy and the coupling of these films have been studied by in-situ magneto optical Kerr effect measurements and Kerr microscopy. The magnetic coupling of both Fe layers is found to be dominated by magnetostatic interaction. Adsorbate-induced spin reorientation in the top layer also causes spin reorientation in the bottom layer. The governing role of the Fe-vacuum interface for the magnetism of the whole trilayer is demonstrated.  相似文献   

9.
The thickness and temperature dependences of the interlayer exchange coupling in well-defined molecular beam epitaxy-grown Fe/Si/Fe sandwich structures have been studied. The biquadratic coupling shows a strong temperature dependence in contrast to the bilinear coupling. Both depend exponentially on thickness. These observations can be well understood in the framework of Slonczewski's loose spins model [J. Appl. Phys. 73, 5957 (1993)]. No bilinear contribution of the loose spins to the coupling was observed.  相似文献   

10.
采用直流磁控溅射方法制备了一系列的合成反铁磁及以其为自由层的自旋阀.研究发现,在Ni81,Fe19与Ru层之间插入适当厚度的Co90Fe10层后,可有效地提高合成反铁磁两磁性层间的反铁磁耦合强度,得到具有饱和场日.更高、饱和磁化强度M.更低、热稳定性更好的合成反铁磁.另外,以这种合成反铁磁作自旋阀的自由层时,可有效提高自旋阀的稳定性.  相似文献   

11.
The superconducting and magnetic properties of the (Fe/Cr/Fe)/V/Fe layered system with variable thickness of the chromium layer have been experimentally and theoretically studied. The magnetic properties of the system have been studied by the ferromagnetic resonance method, and the superconducting transition temperature has been measured from the jump in the magnetic susceptibility. A wide variety of magnetic states are observed in the system; in particular, the structure of small domains can arise in the iron layer placed between vanadium and chromium. It has been shown experimentally that the critical temperature Tc of the superconducting transition undergoes nonmonotonic oscillations with a noticeable amplitude in the given system with the change in the thickness of the Cr layer. The proposed model based on the proximity effect theory makes it possible to relate these Tc oscillations to the features of the magnetic structure of the samples.  相似文献   

12.
In this study, Fe/Ag/Fe/Ag ferromagnetic structures were epitaxially grown on a GaAs(1 0 0) substrate. Using the Network Analyzer (Agilent 8510C), FMR (ferromagnetic resonant) signals were observed in samples as the in-plane magnetic field was applied to either hard- or easy-axes. Of interest was that our sample demonstrated a FMR-switching behavior in hard-axis but not in easy-axis. The detecting data showed that the switch magnetic field was much smaller than what has been stated previously in Fe/Cu/Fe systems by other laboratories. In addition to the frequency switch in FMR, we also observed a magnetic reversal behavior in its MH curve. Data presented that both of the FMR and magnetic reverse took place in the same direction (hard-axis).  相似文献   

13.
Conversion electron Mössbauer spectroscopy (CEMS) and X-ray diffraction (XRD) have been used to investigate the structure of Pt/Fe and Cr/Fe multilayers deposited by magnetron sputtering. The Cr/Fe samples consisted of four samples prepared under Ar sputtering pressures of 1.3, 3.0, 5.0, and 10.0 mT, all with the same multilayer structure of 3.5 nm Cr/2.5 nm Fe, repeated 35 times onto c-Si wafer substrates. The quality of the interfaces between Cr and Fe is clearly degraded with increasing sputter pressure, as seen by changes in the relative intensities of four magnetic subspectra in the CEMS and the gradual appearance of a single-line resonance similar to Fe in solution in Cr. The low-angle XRD superlattice peaks also disappear with increasing sputter pressure, while the high-angle XRD shows a tendency for loss of the preferred (110) texture. Two films of Pt/Fe were deposited epitaxially onto MgO single crystals with bilayer periods of 1.3 nm and 2.6 nm and total thickness of 300 nm each. A transition from fcc-PtFe with near-perpendicular magnetic anisotropy to a bcc-Fe/fcc-PtFe mixture with in-plane magnetic texture is observed by CEMS for the factor of two increase in bilayer period.  相似文献   

14.
The dependences of the structural and magnetic properties of a nanoscale Fe/MgO/Fe planar system on the thickness of the dielectric MgO layer are reported. X-ray crystallographic analysis reveals a high-quality layered structure with abrupt interlayer boundaries and a continuous MgO-insulator layer. Fourth-order magnetocrystalline anisotropy is found in the synthesized structures. A new way to provide antiferromagnetic ordering in the nanostructure is proposed by applying a magnetic field to the investigated structure at an angle of 22° with respect to the easy magnetization axis. In this case, the antiferromagnetic ordering of magnetic moments is established in the field range of 20–50 Oe.  相似文献   

15.
16.
Ke Y  Xia K  Guo H 《Physical review letters》2010,105(23):236801
By first principles analysis, we systematically investigate effects of oxygen vacancies (OV) in the MgO barrier of Fe/MgO/Fe magnetic tunnel junctions. The interchannel diffusive scattering by disordered OVs located at or near the Fe/MgO interface drastically reduces the tunnel magnetoresistance ratio (TMR) from the ideal theoretical limit to the presently observed much smaller experimental range. Interior OVs are far less important in influencing TMR, but they significantly increase the junction resistance. Filling OV with nitrogen atoms restores TMR to near the ideal theoretical limit.  相似文献   

17.
The interlayer magnetic coupling of iron layers as a function of the chromium spacer thickness and temperature has been studied for three-layer epitaxial Fe/Cr/Fe films by the methods of Kerr magnetometry and Mandelstam-Brillouin scattering. The results obtained indicate that the short-period component of the interlayer exchange is related to the spin density wave in the chromium spacer.  相似文献   

18.
The technique of Brillouin light scattering is used to observe strong excitation of magnons in antiferromagnetically coupled trilayers of Fe/Cr/Fe at room temperature. The magnons are driven out of equilibrium by a microwave current applied in the trilayer through point contacts. The magnitude of the scattering intensity is investigated as a function of the magnon wave number and applied magnetic field. Confirming recent theoretical predictions, the observations provide strong evidence of electronic spin injection in the rf driving field.  相似文献   

19.
Spin-dependent transport properties are investigated in a single-crystal magnetic tunnel junction (MTJ) which consists of two Fe electrodes separated by an MgO insulating barrier. Our calculations are based on the first-principle density functional theory including the metal–oxide interface. Modifications are observed in the electronic and magnetic structure of the interface as a result of oxidation. Spin polarizations (SPs) more than 80% and ?86% are obtained at zero temperature for clean interfaces in the parallel and anti-parallel alignments of the ferromagnetic electrodes, respectively, when a 7 monolayer MgO is used as the barrier. In the parallel alignment, the zero-bias SP is observed to be positive throughout the barrier reaching to a maximum at the central point. On the other hand, in the anti-parallel alignment, the SP of the electrodes is seen to penetrate deep into the barrier. The effects of interface oxidation on the band structure of the electrode surfaces are simulated using the fixed-spin-moment calculations. Also, we study dependence of the tunneling magnetoresistance on the barrier thickness and applied voltage in the trilayer within the effective mass approximation. It is shown that the TMR ratio decreases rapidly with increasing the barrier thickness and applied voltage. Our calculations explain qualitatively the main features of the recent experimental observations. Our results may be useful for the development of spintronic devices.  相似文献   

20.
In this work, the magnetic and transport properties of Fe/SiO2/Ni and Fe/SiO2/Co multilayers grown on Si/SiO2 substrates have been studied. The samples have been prepared by two-stage deposition process. In the first stage, Fe layer and SiO2 interlayer of both samples are grown by ion beam deposition technique at room temperature. Then the samples are taken out to ambient atmosphere and loaded into a pulse laser deposition (PLD) chamber. Prior to the deposition of top layer, the samples are cleaned by annealing at 150 °C. In the second stage, Ni (or Co) layer is prepared by PLD technique at room temperature. The thickness of deposited layers has been measured by Rutherford back scattering (RBS). Magnetic properties of ferromagnetic bilayers have been investigated by room-temperature ferromagnetic resonance (FMR) and vibrating sample magnetometer (VSM) techniques. Standard four-point magneto-transport measurements at various temperatures have been performed. Two-step switching in the in-plane hysteresis loops of Fe/SiO2/Ni and Fe/SiO2/Co samples is observed. A crossing in the middle of hysteresis loops of both samples points to a weak antiferromagnetic interaction between the magnetic layers of the stacks. Saturation magnetization values have been obtained from the VSM measurements of samples with DC magnetic field perpendicular to the films surface. Magneto-transport measurements have shown the predominant contribution of anisotropic magnetic resistance both at room and low temperatures. FMR studies of Fe/SiO2/Ni and Fe/SiO2/Co samples have revealed additional non-uniform (surface and bulk SWR) modes, which behavior has been explained in the framework of the surface inhomogeneity model. An origin of the antiferromagnetic interaction has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号