首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The redox reaction Br + BrO3 has been studied in aqueous zwitterionic micellar solutions of N‐tetradecyl‐N, N‐dimethyl‐3‐ammonio‐1‐propanesulfonate, SB3‐14, and N‐hexadecyl‐N,N‐dimethyl‐3‐ammonio‐1‐propanesulfonate, SB3‐16. A simple expression for the observed rate constant, kobs, based on the pseudophase model, could explain the influences of changes in the surfactant concentration on kobs. The kinetic effect of added NaClO4 on the reaction rate in SB3‐14 micellar solutions has also been studied. They were rationalized by considering the binding of the perchlorate anions to the sulfobetaine micelles and their competition with the reactive bromide ions for the micellar surface. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 388–394, 2000  相似文献   

2.
Micellization in water-ethylene glycol (EG) N-dodecyl, N-tetradecyl, and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (SB3-12, SB3-14, and SB3-16, respectively) micellar solutions, with the weight percent of EG changing within the range 0-40, was studied by means of surface tension measurements. Information about the influence of the added EG on the aggregation number of the sulfobetaine micelles and on the polarity of the interfacial region of micelles was obtained through fluorescence and spectroscopic measurements. Surface tension measurements also provide information about the dependence of the surface excess concentration, the minimum area per surfactant molecule, the surface pressure at the cmc, and the standard Gibbs energy of adsorption on the added weight percent of the organic solvent. The Gordon parameter of the water-EG mixtures was also estimated by means of surface tension measurements. The thermodynamic and structural changes originated by the presence of EG control the micellar kinetic effects observed in the reaction methyl 4-nitrobenzenesulfonate + Br(-) occurring in the water-EG sulfobetaine micellar solutions. Information about the distribution of bromide ions between the bulk and micellar pseudophases was obtained through conductivity measurements. The kinetic micellar effects were quantitatively explained by using the pseudophase kinetic model.  相似文献   

3.
The elimination reaction between 2-(p-nitrophenyl)ethyl bromide and OH- ions was studied in nonionic aqueous micellar solutions of two esters of long chain fatty acids and sorbitan polyethylene glycol, Tween 20 (monolaurate) and Tween 80 (monooleate). The equilibrium binding constants of the 2-(p-nitrophenyl)ethyl bromide molecules to the nonionic micellar aggregates were obtained by spectroscopic measurements. The experimental kinetic data were quantitatively rationalized by the treatment of first-order reactions based on the pseudophase model. Results from this work and from previous studies show that, whereas the presence of cationic and sulfobetaine micelles accelerates the reaction, the presence of nonionic micelles inhibits the reaction.  相似文献   

4.
The reactions 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane + OH(-) and 2-(p-nitrophenyl)ethyl bromide + OH(-) were studied in tetradecyltrimethylamonium bromide, TTAB, and TTAB-pentanol micellar solutions. The influence of changes in the surfactant concentration as well as changes in the hydroxide ion concentration on the observed rate constant was investigated. If changes in the cmc and ionization degree provoked by the presence of the different amounts of n-pentanol in the micellar solutions are taken into account, the experimental kinetic data can be rationalized quantitatively by using the PIE model. Assuming that the ion-exchange equilibrium constant, K(OH(-)/Br(-)), for the competition between the bromide and the hydroxide ions in all TTAB and in TTAB-pentanol micellar solutions studied is the same, a good agreement between the theoretical and the experimental kinetic data was found in all the micellar media for the two processes studied. This assumption was checked by experimentally determining the ion-exchange equilibrium constant K(OH(-)/Br(-)) in TTAB and TTAB-pentanol micellar solutions through a spectroscopic method, results showing that the presence of n-pentanol does not affect substantially the value of K(OH(-)/Br(-)). The second-order rate constants obtained from the fittings decrease slightly when the amount of pentanol increases, being greater than that in aqueous solution. This acceleration can be explained considering that micelles accelerate the reactions in which the charge is delocalized in the transition state.  相似文献   

5.
The reaction Fe(CN)4(bpy)2? + S2O82? has been studied in aqueous micellar solutions of N‐tetradecyl‐N,N‐dimethyl‐3‐ammonio‐1‐propanesulfonate, SB3‐14. The influence of changes in the surfactant concentration as well as in the peroxodisulfate ions concentration on kobs was investigated. Spectroscopic and conductivity measurements have given information about the distribution of both anionic reagents between the aqueous and micellar pseudophases of the SB3‐14 micellar solutions. A discussion about the adequacy of various equations based on the pseudophase model to rationalize kinetic micellar effects for anion‐anion reactions in sulfobetaine micellar solutions has been done. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 225–231, 2001  相似文献   

6.
The reaction methyl-4-nitrobenzenesulfonate + Br(-) was studied in tetradecyltrimethylammonium bromide (TTAB) aqueous micellar solutions in the absence and in the presence of various amounts of n-hexanol, n-pentanol, and n-butanol. Kinetic micellar effects provoked by the addition of the linear alcohols can be rationalized by using simple pseudophase kinetic models. The equilibrium binding constants of the methyl-4-nitrobenzenesulfonate molecules to the cationic micelles decreases when [alcohol] increases. The (k(2)(m)/V(m)) values found are practically the same for the different TTAB-alcohol micellar solutions studied, independent of the nature and concentration of the alcohol present in the reaction medium. This has been explained by considering the balance of two factors operating on reactivity in opposite ways: (1). an increase in the volume of the micellar interfacial region upon increasing alcohol concentration, and (2). a decrease in the polarity of the interfacial region as the amount of alcohol present in the micellar solutions increases.  相似文献   

7.
The dehydrobromination reaction 2-(p-nitrophenyl)ethyl bromide + OH? was investigated in several alkanediyl-α-ω-bis(dodecyldimethylammonium) bromide, 12-s-12,2Br? (with s = 2, 3, 4, 5, 6, 8, 10, 12) micellar solutions, in the presence of NaOH 5 × 10?3 M. The kinetic data were quantitatively rationalized within the whole surfactant concentration range by using an equation based on the pseudophase ion-exchange model and taking the variations in the micellar ionization degree caused by the morphological transitions into account. The agreement between the theoretical and the experimental data was good in all the dimeric micellar media studied, except for the 12-2-12,2Br? micellar solutions. In this case, the strong tendency to micellar growth shown by the 12-2-12,2Br? micelles could be responsible for the lack of accordance. Results showed that the dimeric micelles accelerate the reaction more than two orders of magnitude as compared to water.  相似文献   

8.
The reaction of methyl 4‐nitrobenzenesulfonate (MNB) and Br? has been studied in water–glycerol (GLY) alkyltrimethylammonium bromide micellar solutions, with the weight percentage of glycerol up to 50%. A pseudophase kinetic model was used for quantitatively discussing the kinetic data. Results showed that the equilibrium‐binding constant for the organic substrate molecules to the cationic micelles decreases upon increasing the amount of glycerol present in the micellar reaction media. The second‐order rate constant of the reaction in the micellar pseudophase is practically independent of wt% of GLY. Similar results were found in other water–organic solvent alkyltrimethylammonium bromide micellar solutions for the same process. However, the dependence of the reaction rate, for a given surfactant concentration, on the wt% of organic solvent is weaker for glycerol than for the other organic solvents. This was explained by considering that the cationic micellar ionization degree is nearly independent of wt% GLY. As a consequence, bromide ions concentration in the interfacial region (the reaction site) does not change by varying wt% of GLY. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 845–582, 2008  相似文献   

9.
The effects of the concentration of inert organic salts, [MX], (MX=2-, 3- and 4-BrBzNa with BrBzNa=BrC(6)H(4)CO(2)Na) on the rate of piperidinolysis of ionized phenyl salicylate (PS(-)) have been rationalized in terms of pseudophase micellar (PM) coupled with an empirical equation. The appearance of induction concentration in the plots of k(obs) versus [MX] (where k(obs) is pseudo-first-order rate constants for the reaction of piperidine (Pip) with PS(-)) is attributed to the occurrence of two or more than two independent ion exchange processes between different counterions at the cationic micellar surface. The derived kinetic equation, in terms of PM model coupled with an empirical equation, gives empirical parameters F(X/S) and K(X/S) whose magnitudes lead to the calculation of usual ion exchange constant K(X)(Br) (=K(X)/K(Br) with K(X) and K(Br) representing cationic micellar binding constants of counterions X(-) and Br(-), respectively). The value of F(X/S) measures the fraction of S(-) (=PS(-)) ions transferred from the cationic micellar pseudophase to the aqueous phase by the optimum value of [MX] due to ion exchange X(-)/S(-). Similarly, the value of K(X/S) measures the ability of X(-) ions to expel S(-) ions from cationic micellar pseudophase to aqueous phase through ion exchange X(-)/S(-). This rather new technique gives the respective values of K(X)(Br) as 8.8±0.3, 71±6 and 62±5 for X(-)=2-, 3- and 4-BrBz(-). Rheological measurements reveal the shear thinning behavior of all the surfactant solutions at 15mM CTABr (cetyltrimethylammonium bromide) indicating indirectly the presence of rodlike micelles. The plots of shear viscosity (η) at a constant shear rate (γ), i.e. η(γ), versus [MX] at 15 mM CTABr exhibit maxima for MX=3-BrBzNa and 4-BrBzNa while for MX=2-BrBzNa, the viscosity maximum appears to be missing. Such viscosity maxima are generally formed in surfactant solutions containing long stiff and flexible rodlike micelles with entangled and branched/multiconnected networks. Thus, 15 mM CTABr solutions at different [MX] contain long stiff and flexible rodlike micelles for MX=3- and 4-BrBzNa and short rodlike micelles for MX=2-BrBzNa.  相似文献   

10.
The micellar effect of surfactants of various types on the rate of the reaction between methyl violet and hydroxide ion is studied. The absorption spectra show that the cation of methyl violet is bound by micelles of all types at proper concentrations of surfactants. The observed rate constant in micellar systems containing nonionic Brij-35, zwitterionic 3-(dimethyldodecylammonio)-propanesulfonate, cationic cetyltrimethylammonium bromide and hydroxide surfactants is higher, whereas in solutions of the anionic surfactant sodium dodecylsulfate is lower than that one in the surfactant-free system. Piszkiewicz's, Berezin's, and pseudophase ion-exchange models of the kinetic micellar effect are used for the treatment of the dependences of the above-mentioned constants on the surfactant concentration. The values of the corresponding kinetic parameters are compared and discussed. The influence of nonionic, zwitterionic, and anionic micelles on the reaction rate is discussed on the basis of medium and concentration kinetic effects. The character of the cationic micelles effect is somewhat paradoxical. Although the observed pseudo–first-order reaction rate constant substantially increases in the presence of such micelles, the second order-rate constant in these micelles is lower than the corresponding value in surfactant-free aqueous solution. As a possible explanation, the decrease in the reactivity of the HO ions is proposed, owing to their electrostatic association with the cationic headgroups (“diverting effect”).  相似文献   

11.
The effect of cationic micelles of cetyltrimethylammonium bromide (CTAB) on the interaction of chromium dipeptide complex ([Cr(III)-Gly-Gly]2+) with ninhydrin under varying conditions has been investigated. The rates of the reaction were determined in both water and surfactant micelles in the absence and presence of various organic and inorganic salts at 70 ℃ and pH 5.0. The reaction followed first-and fractional-order kinetics with respect to [Cr(III)-Gly-Gly2+] and [ninhydrin]. Increase in the total concentration of CTAB from0 to 40×10-3mol·dm-3 resulted in an increase in the pseudo-first-order rate constant (kψ) by a factor of ca 3. Quantitative kinetic analysis of kψ-[CTAB] data was performed on the basis of the pseudo-phase model of the micelles. As added salts induce structural changes in micellar systems that may modify the substrate-surfactant interactions, the effect of some inorganic (NaBr, NaCl, Na2SO4) and organic (NaBenz, NaSal, NaTos) salts on the rate was also explored. It was found that the tightly bound counterions (derived fromorganic salts) were the most effective.  相似文献   

12.
The cleavage of 2-hydroxypropyl p-nitrophenyl phosphate (HPNP) catalyzed by the Zn(II)-biap (biap: N,N-bis(2-ethyl-5-methylimidazole-4-ylmethyl)aminopropane) complex has been investigated spectrophotometrically in a micellar solution of cationic Gemini surfactant 16-2-16 [bis(hexadecyldimethylammonium)ethane bromide] and CTAB (hexadecyltrimethylammonium bromide) at 25+/-0.1 degrees C. The experimental results reveal that a higher rate of acceleration (about 2016-fold) of HPNP cleavage promoted by the Zn(II)-biap complex has been observed in the 16-2-16 micellar solution in comparison with the background rate (k(0)) of HPNP spontaneous cleavage at 25 degrees C. Reaction rates of HPNP cleavage in CTAB micellar solutions are only about 40% of that in Gemini 16-2-16 micelles under comparable conditions. In addition, the cleavage rates of HPNP in Gemini micelles and in CTAB micelles are respectively 29.5 times and 12 times faster than that in aqueous buffer. Especially, a "sandwich absorptive mode" has been proposed to explain the acceleration of HPNP cleavage in a cationic micellar solution.  相似文献   

13.
The effects of n‐hexanol, n‐pentanol, and n‐butanol on the critical micelle concentration (cmc), on the micellar ionization degree (α), and on the rate of the reaction methyl 4‐nitrobenzenesulfonate + Br? have been investigated in cetyltrimethylammonium bromide (CTAB) aqueous solutions. An increase in the alcohol concentration present in the solution produces a decrease in the cmc and an increase in the micellar ionization degree. Kinetic data show that the observed rate constant decreases as alcohol concentration increases. This result was rationalized by considering variations in the equilibrium binding constant of the methyl 4‐nitrobenzenesulfonate molecules to the micelles, variations in the interfacial bromide ion concentration, and variations in the characteristics of the water–alcohol bulk phase provoked by the presence of alcohols. When these operative factors are considered, kinetic data in this and other works show that the second‐order rate constants in the micellar pseudophases of water–alcohol micellar solutions are quite similar to those estimated in the absence of alcohols. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 634–641, 2004  相似文献   

14.
The reaction between methyl 4-nitrobenzenesulfonate and bromide ions has been studied in mixed single-chain-gemini micellar solutions of n-dodecyltrimethylammonium bromide, DTAB, and dodecyl tricosaoxyethylene glycol ether, Brij(35), with alkanediyl-alpha-omega-bis(dodecyldimethylammonium) bromide, 12-s-12,2Br(-) (s=3,4,5). Kinetic micellar effects show that an increase in the solution mole fraction of the single-chain surfactant, X(single-chain), results in a diminution of the mixed micelles tendency to form spherocylindrical aggregates upon increasing surfactant concentration. The dependence of the surfactant concentration at which the sphere-to-rod transition occurs, C(*), on X(single-chain) showed through kinetic data was in agreement with results obtained by means of fluorescence measurements.  相似文献   

15.
The oxidations of ferrocene (FcH) and n-butylferrocene (FcBu) by ferric salts (nitrate or bromide) are strongly inhibited by aqueous cetyltrimethylammonium bromide and nitrate (CTABr and CTANO3, respectively). The kinetics of inhibition fit a model in which the substrates are distributed between water, and the micelles and binding constants Ks to the micelle can be estimated. The oxidations are strongly catalyzed by micelles of sodium lauryl sulfate (NaLS), and the kinetics can be fitted to a model in which the reaction rate depends upon the concentration of both reactants in the micellar pseudophase and the rate constants in that pseudophase, which for both substrates are very similar to those in water. Some added salts reduce the micellar catalysis by excluding ferric ions from the micelle. The oxidations of FcH and FcBu by ferricyanide ions are too fast to be followed in water, but they are inhibited by anionic micelles of NaLS. By analyzing the rate surfactant profiles using independently measured values of Ks the second-order rate constants in water have been estimated.  相似文献   

16.
The rates of reaction between ninhydrin and dipeptide glycyl–glycine (Gly–Gly) have been determined by studying the reaction spectrophotometrically at 70°C and pH 5.0 in aqueous and in aqueous cationic micelles of cetyltrimethylammonium bromide (CTAB). The reaction follows first‐ and fractional‐order kinetics, respectively, in [Gly–Gly] and [ninhydrin]. The observed rate constant is affected by [CTAB] changes and the maximum rate enhancement is ca. three‐fold. As the kψ ? [CTAB] profile shape is characteristic of bimolecular reactions catalyzed by micelles, the catalysis is explained in terms of the pseudo‐phase model of the micelles (proposed by Menger and Portnoy and developed by Bunton and Romsted). The presence of inorganic salts (NaCl, NaBr, Na2SO4) does not reveal any regular effect but the data with organic salts (NaBenz, NaSal) show an increase in the rate followed by a decrease. The kinetic data have been used to calculate the micellar binding constants KS for Gly–Gly and KN for ninhydrin and the respective values are 317 and 69 mol?1 dm3. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 643–650, 2006  相似文献   

17.
The rate of alkaline hydrolysis of ethyl p-nitrophenyl (chloromethyl)phosphonate in micellar solutions of cationic surfactants decreases with increasing concentration of chloride, bromide, and salicylate ions. In the presence of electrolytes, the critical micell concentration of surfactants and the surface potential of micelles also decrease.  相似文献   

18.
Addition of salts, especially perchlorates, to zwitterionic micelles of SB3-14, C(14)H(29)NMe(2)(+)(CH(2))(3)SO(3)(-), induces anionic character and uptake of H(3)O(+) by SB3-14 micelles. Thus, the addition of alkali metal perchlorates accelerates the acid hydrolysis of 2-(p-heptoxyphenyl)-1,3-dioxolane, HPD, in the presence of SB3-14 micelles, which depends on the local proton concentration at the micelle surface. The addition of metal chlorides to solutions of such perchlorate-modified SB3-14 micelles decreases both the negative zeta potential of the micelles and the observed rate constant for acid hydrolysis of HPD. The effect of the monovalent cations Li(+), Na(+), and K(+) is smaller than that of the divalent cations Be(2+), Mg(2+), and Ca(2+), and much smaller than that of the trivalent cations Al(3+), La(3+), and Er(3+). The major factor responsible for this cation valence dependence of these effects is shown to be electrostatic in nature, reflecting the strong dependence of the micellar surface potential on the cation valence. The fact that the salt effects are not identical after correction for the electrostatic effects indicates that additional secondary nonelectrostatic effects may contribute as well.  相似文献   

19.
The rate of specific hydrogen ion-catalyzed hydrolysis of 2-( p-heptoxyphenyl)-1,3-dioxolane and acid-base equilibrium of 4-carboxy-1-n-dodecylpyridinium in zwitterionic micelles of SB3-14, C14H29NMe2+(CH2)3SO3(-) are controlled by NaClO4, which induces anionic character and uptake of H3O+ in the micelles. Other salts, e.g., NaF, NaCl, NaBr, NaNO3, NaI, NaBF4, have similar, but smaller, effects on the uptake of H3O+. Salt effects upon zeta potentials of SB3-14 micelles, estimated by capillary electrophoresis, are anion specific, and the anion order is similar to that of the rates of acid hydrolysis and of acid-base equilibria. Fluorescence quenching shows that the micellar aggregation number is not very sensitive to added salts, consistent with electrophoretic evidence. These specific anion effects follow the Hofmeister series and are related to anion hydration free energies.  相似文献   

20.
The spontaneous hydrolysis of phenyl chloroformate was studied in various anionic, nonionic, zwitterionic, and cationic aqueous micellar solutions, as well as in mixed anionic–nonionic micellar solutions. In all cases, an increase in the surfactant concentration results in a decrease in the reaction rate and micellar effects were quantitatively explained in terms of distribution of the substrate between water and micelles and the first‐order rate constants in the aqueous and micellar pseudophases. A comparison of the kinetic data in nonionic micellar solutions to those in anionic and zwiterionic micellar solutions makes clear that charge effects of micelles is not the only factor responsible for the variations in the reaction rate. Depletion of water in the interfacial region and its different characteristics as compared to bulk water, the presence of high ionic concentration in the Stern layer of ionic micelles, and differences in the stabilization of the initial state and the transition state by hydrophobic interactions with surfactant tails can also influence reactivity. The different deceleration of the reaction observed in the various micellar solutions studied was discussed by considering these factors. Synergism in mixed‐micellar solutions is shown through the kinetic data obtained in these media. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 445–451, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号