首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The focus of this paper is the derivation of a nonstandard model for microbial enhanced oil recovery (MEOR) that includes the interfacial area (IFA) between oil and water. We consider the continuity equations for water and oil, a balance equation for the oil–water interfacial area, and advective–dispersive transport equations for bacteria, nutrients, and biosurfactants. Surfactants lower the interfacial tension (IFT), which improves oil recovery. Therefore, the parametrizations of the IFT reduction and residual oil saturation are included as a function of the surfactant concentration in the model. We consider for the first time in context of MEOR, the role of IFA in enhanced oil recovery. The motivation to include the IFA is to model the hysteresis in the capillary pressure–saturation relationship in a physically based manner, to include the effects of observed bacteria migration toward the oil–water interface and the production of biosurfactants at the oil–water interface. A comprehensive 2D implementation based on two-point flux approximation and backward Euler is proposed. An efficient and robust linearization scheme is used to solve the nonlinear systems at each time step. Illustrative numerical simulations are presented. The differences in the oil recovery profiles obtained with and without IFA are discussed. The presented model can also be used to design new experiments toward a better understanding and eventually optimization of MEOR.  相似文献   

2.
Liu  Zheyu  Cheng  Hongjie  Li  Yanyue  Li  Yiqiang  Chen  Xin  Zhuang  Yongtao 《Transport in Porous Media》2019,126(2):317-335

Surfactant/polymer (SP) floods have significant potentials to recover remaining oil after water flooding. Their efficiency can be maximized by fully utilizing synergistic effect of polymer and surfactant. Various components adsorbed on the rock matrix due to chromatographic separation can significantly weaken the synergistic effect. Due to scale and dimensional problems, it is hard to investigate chromatographic separation among various components using one-dimensional natural cores. This study compared the adsorption difference between artificial and natural cores and developed a three-dimensional artificial core model of a 1/4 5-spot configuration to simulate oil recovery in multilayered reservoirs with high, middle and low permeability for each layer. Sampling wells were established to monitor pressures, and effluent fluids were acquired to measure interfacial tension (IFT) and viscosity. Then, distances of synergy of polymer and surfactant in three layers were evaluated. Meanwhile, electrodes were set in the model to measure oil saturation variation with resistance changes at different locations. Through comparison with IFT values, the contribution of improved swept volume and oil displacement efficiency to oil recovery during SP flooding could be known. Results showed that injected 0.65 PV of SP could improve oil recovery by 21.56% when water cut reached 95% after water flooding. The retention ratio of polymer viscosity was kept 55.3% at the outlet, but IFT was only 2 mN/m within the 3/10 injector–producer spacing during SP injection. Although subsequent water flooding could result in surfactant desorption and the IFT became 10?2?mN/m within the 3/10 injector–producer spacing, the IFT turned to 2?mN/m at the half of the model. The enhanced displacement efficiency by reducing IFT only worked within three-tenth location of the model in the high permeability layer, while the enlarged swept volume contributed much in the other areas.

  相似文献   

3.
Recovery of oil from the blocks of an initially oil-wet, naturally fractured, reservoir as a result of counter-current flow following introduction of aqueous wettability-altering surfactant into the fracture system is considered, as an example of a practical process in which phenomena acting at the single pore-scale are vital to the economic displacement of oil at the macroscopic scale. A Darcy model for the process is set up, and solutions computed illustrating the recovery rate controlling role of the bulk diffusion of surfactant. A central ingredient of this model is the capillary pressure relation, linking the local values of the pressure difference between the oleic and aqueous phases, the aqueous saturation and the surfactant concentration. Using ideas from single capillary models of oil displacement from oil-wet tubes by wettability-altering surfactant, we speculate that the use of a capillary pressure function, with dependences as assumed, may not adequately represent the Darcy scale consequences of processes acting at the single pore-scale. Multi-scale simulation, resolving both sub-pore and multi-pore flow processes may be necessary to resolve this point. Some general comments are made concerning the issues faced when modelling complex displacement processes in porous media starting from the pore-scale and working upwards.  相似文献   

4.
A dynamic pore network model, capable of predicting the displacement of oil from a porous medium by a wettability-altering and interfacial tension reducing surfactant solution, is presented. The key ingredients of the model are (1) a dynamic network model for the displacement of oil by aqueous phase taking account of capillary and viscous effects, (2) a simulation of the transport of surfactant through the network by advection and diffusion taking account of adsorption on the solid surface, and (3) the coupling of these two by linking the contact angle and interfacial tension appearing in the dynamic network simulation to the local concentration of surfactant computed in the transport simulation. The coupling is two-way: The flow field used to advect the surfactant concentration is that associated with the displacement of oil by the injected aqueous phase, and the surfactant concentration influences the flow field through its effect on the capillarity parameters. We present results obtained using the model to validate that it reproduces the displacement patterns observed by other authors in two-dimensional networks as capillary number and mobility ratio are varied, and to illustrate the effects of surfactant on displacement patterns. A mechanism is demonstrated whereby in an initially mixed-wet medium, surfactant-induced wettability alteration can lead to stabilization of displacement fronts.  相似文献   

5.
6.
The dynamics of the formation of a surface phase in aqueous solutions of surfactants in a tray with the Langmuir barrier system during one compression–expansion cycle of the interface boundary is investigated both experimentally and theoretically. Organic salts of fatty acids such as potassium laurate, caprylate, and acetate, which are members of the same homologous series, were used as surfactants. It is experimentally determined that the dependence of the surface pressure increment measured under the maximum compression of the surface on the volume concentration has a maximum, the position of which is different for all the studied surfactant solutions. It is shown that the position of the maximum corresponds to the concentration value at which a saturated monolayer of surfactant molecules is formed at the interface boundary. A theoretical model that considers the effect of the forced convection arisen in the bulk of the solution upon changing the surface area is proposed for the interpretation of the experimental results. The model allows one to render the main kinetic characteristics of the adsorption/desorption processes involving the compounds under study. A good agreement between the theoretical and experimental results is observed, but there is a discrepancy between them when diffusion is considered to be the only way surfactant molecules are transferred into the bulk phase. Based on the data, a new method for determination of the Langmuir–Shishkovsky constant is proposed.  相似文献   

7.
The interacting capillary bundle model proposed by Dong et al. [Dong, M., Dullien, F.A.L., Zhou, J.: Trans. Porous Media 31, 213–237 (1998); Dong, M., Dullien, F.A.L., Dai, L., Li, D.: Trans. Porous Media 59, 1–18 (2005); Dong, M., Dullien, F.A.L., Dai, L., Li, D.: Trans. Porous Media 63, 289–304 (2006)] has simulated correctly various aspects of immiscible displacement in porous media, such as oil production histories at different viscosity ratios, the effects of water injection rate and of the oil–water viscosity ratio on the shape of the displacement front and the independence of relative permeabilities of the viscosity ratio. In the interacting capillary bundle model pressure equilibrium was assumed at any distance x measured along the bundle. Interaction between the capillaries also results in transfer of fluids across the capillaries. In the first part of this paper the process of fluid transfer between two capillaries is analysed and an algebraic expression for this flow is derived. Consistency with the assumption of pressure equilibration requires that all transfer must take place at the positions of the oil/water menisci in the tubes without any pressure drop. It is shown that fluid transfer between the tubes has no effect on the predictions obtained with the model. In the second part of the paper the interacting tube bundle model is made more realistic by assuming fluid transfer between the tubes all along the single phase flow regions across a uniform resistance, resulting in pressure differences throughout the single phase regions between the fluids present in the different tubes. The results of numerical simulations obtained with this improved interacting capillary bundle model show only small differences in the positions of the displacement front as compared with the predictions of the idealized model.  相似文献   

8.
Oil can be recovered from fractured, initially oil-wet carbonate reservoirs by wettability alteration with dilute surfactant and electrolyte solutions. The aim of this work is to study the effect of salinity, surfactant concentration, electrolyte concentration, and temperature on the wettability alteration and identify underlying mechanisms. Contact angles, phase behavior, and interfacial tensions were measured with two oils (a model oil and a field oil) at temperatures up to 90°C. There exists an optimal surfactant concentration for varying salinity and an optimal salinity for varying surfactant concentration at which the wettability alteration on an oil-aged calcite plate is the maximum for anionic surfactants studied. As the salinity increases, the extent of maximum wettability alteration decreases; also the surfactant concentration needed for the maximum wettability alteration decreases. IFT and contact angle were found to have the same optimal salinity for a given concentration of anionic surfactants studied. As the ethoxylation increases in anionic surfactants, the extent of wettability alteration on calcite plates increases. Wettability of oil-aged calcite plates can be altered by divalent ions at a high temperature (90°C and above). Sulfate ions alter wettability to a greater extent in the presence of magnesium and calcium ions than in the absence. A high concentration of calcium ions can alter wettability alone. Magnesium ions alone do not change calcite plate wettability. Wettability alteration increases the oil recovery rate from initially oil-wet Texas Cordova Cream limestone cores by imbibition.  相似文献   

9.
Surfactant loss due to adsorption on the porous medium of an oil reservoir is a major concern in enhanced oil recovery. Surfactant loss due to adsorption on the reservoir rock weakens the effectiveness of the injected surfactant in reducing oil–water interfacial tension (IFT) and making the process uneconomical. In this study, surfactant concentrations in the effluent of the corefloods and oil–water IFT were determined under different injection strategies. It was found that in an extended waterflood following a surfactant slug injection, surfactant desorbed in the water phase. This desorbed surfactant lasted for a long period of the waterflood. The concentration of the desorbed surfactant in the extended waterflood was very low but still an ultralow IFT was obtained by using a suitable alkali. Coreflood results show an additional recovery of 13.3% of the initial oil in place was obtained by the desorbed surfactant and alkali. Results indicate that by utilizing the desorbed surfactant during the extended waterflood operation the efficiency and economics of the surfactant flood can be improved significantly.  相似文献   

10.
The flow of water and 1% surfactant solution displacing oil through homogeneous and non-homogeneous porous media have been studied experimentally. The results are shown by taking the photographs of unstable interface at regular interval of time. These photographs suggest that the spreading of the moving interface in lateral direction is more for 1% surfactant solution displacing oil than for water displacing oil and also the interface is more stable for surfactant flooding in the bed. The wavelengths of viscous fingers measured from the experiments are found to be in good agreement with the theoretical predictions for homogeneous bed. The percentage oil recovery at breakthrough is improved considerably with the use of surfactant solution. Effect of flow rate on recovery and breakthrough time has also been studied. Finally, the effect of non-homogeneous packing on the growth of fingers has been studied by creating non-homogeneous medium in an otherwise homogeneous porous medium.  相似文献   

11.
The silicon oil displacement by a water solution of glycerin in a radial Hele–Shaw cell is experimentally investigated. The morphological stability of the interface between the two fluids in the course of displacement at a constant flow rate is studied. For low perturbing modes the known theoretical result concerning the existence of three domains in the displacement process, namely, stable, metastable (the interface either loses or conserves its shape), and unstable, is experimentally confirmed. For the fourth-mode perturbations the difference with the calculations is revealed: the interface behavior is always metastable.  相似文献   

12.
When regions of three-phase flow arise in an oil reservoir, each of the flow parameters, i.e. capillary pressures and relative permeabilities, are generally functions of two phase saturations and depend on the wettability state. The idea of this work is to generate consistent pore-scale based three-phase capillary pressures and relative permeabilities. These are then used as input to a 1-D continuum core- or reservoir-scale simulator. The pore-scale model comprises a bundle of cylindrical capillary tubes, which has a distribution of radii and a prescribed wettability state. Contrary to a full pore-network model, the bundle model allows us to obtain the flow functions for the saturations produced at the continuum-scale iteratively. Hence, the complex dependencies of relative permeability and capillary pressure on saturation are directly taken care of. Simulations of gas injection are performed for different initial water and oil saturations, with and without capillary pressures, to demonstrate how the wettability state, incorporated in the pore-scale based flow functions, affects the continuum-scale displacement patterns and saturation profiles. In general, wettability has a major impact on the displacements, even when capillary pressure is suppressed. Moreover, displacement paths produced at the pore-scale and at the continuum-scale models are similar, but they never completely coincide.  相似文献   

13.
In the first part of this work (Dong et al., Transport Porous Media, 59, 1–18, 2005), an interacting capillary bundle model was developed for analysing immiscible displacement processes in porous media. In this paper, the second part of the work, the model is applied to analyse the fluid dynamics of immiscible displacements. The analysis includes: (1) free spontaneous imbibition, (2) the effects of injection rate and oil–water viscosity ratio on the displacement interface profile, and (3) the effect of oil–water viscosity ratio on the relative permeability curves. Analysis of a non-interacting tube bundle model is also presented for comparison. Because pressure equilibration between the capillaries is stipulated in the interacting capillary model, it is able to reproduce the behaviour of immiscible displacement observed in porous media which cannot be modelled by using non-interacting tube bundle models.  相似文献   

14.
From the macroscopic point of view, expressions involving reservoir and operational parameters are established for investigating the stability of moving interface in piston- and non-piston-like displacements. In the case of axisymmetrical piston-like displacement, the stability is related to the moving interface position and water to oil mobility ratio. The capillary effect on the stability of moving interface depends on whether or not the moving interface is already stable and correlates with the wettability of the reservoir rock. In the case of non-piston-like displacement, the stability of the front is governed by both the relative permeability and the mobility ratio.  相似文献   

15.
Enhanced oil recovery (EOR) by alkaline flooding for conventional oils has been extensively studied. For heavy oils, investigations are very limited due to the unfavorable mobility ratio between the water and oil phases. In this study, the displacement mechanisms of alkaline flooding for heavy oil EOR are investigated by conducting flood tests in a micromodel. Two different displacement mechanisms are observed for enhancing heavy oil recovery. One is in situ water-in-oil (W/O) emulsion formation and partial wettability alteration. The W/O emulsion formed during the injection of alkaline solution plugs high permeability water channels, and pore walls are altered to become partially oil-wetted, leading to an improvement in sweep efficiency and high tertiary oil recovery. The other mechanism is the formation of an oil-in-water (O/W) emulsion. Heavy oil is dispersed into the water phase by injecting an alkaline solution containing a very dilute surfactant. The oil is then entrained in the water phase and flows out of the model with the water phase.  相似文献   

16.
We present a pore-scale network model of two- and three-phase flow in disordered porous media. The model reads three-dimensional pore networks representing the pore space in different porous materials. It simulates wide range of two- and three-phase pore-scale displacements in porous media with mixed-wet wettability. The networks are composed of pores and throats with circular and angular cross sections. The model allows the presence of multiple phases in each angular pore. It uses Helmholtz free energy balance and Mayer–Stowe–Princen (MSP) method to compute threshold capillary pressures for two- and three-phase displacements (fluid configuration changes) based on pore wettability, pore geometry, interfacial tension, and initial pore fluid occupancy. In particular, it generates thermodynamically consistent threshold capillary pressures for wetting and spreading fluid layers resulting from different displacement events. Threshold capillary pressure equations are presented for various possible fluid configuration changes. By solving the equations for the most favorable displacements, we show how threshold capillary pressures and final fluid configurations may vary with wettability, shape factor, and the maximum capillary pressure reached during preceding displacement processes. A new cusp pore fluid configuration is introduced to handle the connectivity of the intermediate wetting phase at low saturations and to improve model’s predictive capabilities. Based on energy balance and geometric equations, we show that, for instance, a gas-to-oil piston-like displacement in an angular pore can result in a pore fluid configuration with no oil, with oil layers, or with oil cusps. Oil layers can then collapse to form cusps. Cusps can shrink and disappear leaving no oil behind. Different displacement mechanisms for layer and cusp formation and collapse based on the MSP analysis are implemented in the model. We introduce four different layer collapse rules. A selected collapse rule may generate different corner configuration depending on fluid occupancies of the neighboring elements and capillary pressures. A new methodology based on the MSP method is introduced to handle newly created gas/water interfaces that eliminates inconsistencies in relation between capillary pressures and pore fluid occupancies. Minimization of Helmholtz free energy for each relevant displacement enables the model to accurately determine the most favorable displacement, and hence, improve its predictive capabilities for relative permeabilities, capillary pressures, and residual saturations. The results indicate that absence of oil cusps and the previously used geometric criterion for the collapse of oil layers could yield lower residual oil saturations than the experimentally measured values in two- and three-phase systems.  相似文献   

17.
Self-similar solutions describing the displacement of oil by solutions of an adsorbed active additive have been obtained and investigated [1–3] in the framework of a one-dimensional flow model with neglect of diffusion, capillary, and gravity effects. In the present paper, a self-similar solution is constructed for the problem of oil displacement by an aqueous solution of an active additive from a thin horizontal stratum with allowance for gravity under the assumption that there is instantaneous vertical separation of the phases. This makes it possible to estimate the effectiveness of flooding a stratum by solutions of surfactants and polymers in the cases when gravitational segregation of the phases cannot be ignored.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 87–92, January–February, 1984.  相似文献   

18.
The flow of oil-in-water emulsions through quartz micro-capillary tubes was analyzed experimentally. The capillaries were used as models of connecting pore-throats between adjacent pore body pairs in high-permeability media. Pressure drop between the inlet and outlet ends of the capillary was recorded as a function of time, for several values of the volumetric flow rate. Several distinct emulsions were prepared using synthetic oils in deionized water, stabilized by a surfactant (Triton X-100). Two oils of different viscosity values were used to prepare the emulsions, while two distinct drop size distributions were obtained by varying the mixing procedure. The average oil drop size varied from smaller to larger than the neck radius. The results are presented in terms of the extra-pressure drop due to the presence of the dispersed phase, i.e. the difference between the measured pressure drop and the one necessary to drive the continuous phase alone at the same flow rate. For emulsions with drops smaller than the capillary throat diameter, the extra-pressure drop does not vary with capillary number and it is a function of the viscosity ratio, dispersed phase concentration and drop size distribution. For emulsions with drops larger than the constriction, the large oil drops may partially block the capillary, leading to a high extra pressure difference at low capillary numbers. Changes in the local fluid mobility by means of pore-throat blockage may help to explain the additional oil recovery observed in laboratory experiments and the sparse data on field trials.  相似文献   

19.
We develop a grain-based model for capillarity controlled displacement within 3D fractionally wet porous media. The model is based on a novel local calculation of the position of stable fluid–fluid interfaces in contact with multiple spherical grains of arbitrary contact angles. The interface is assumed to be locally spherical between bulk phases; the interface is assumed to be toroidal between pairs of grains (surfaces of pendular rings). Because the calculation of interface position is entirely local and grain-based, it provides a single, generalized, geometric basis for computing pore-filling events during drainage as well as imbibition with both Melrose events (merging of two interfaces) and Haines events (geometric instability). The model is validated against a series of drainage/imbibition experiments (oil/water) on fractionally wet porous media prepared by mixing oil-wet grains with water-wet grains.  相似文献   

20.
Positive velocity dependency of relative permeability of gas–condensate systems, which has been observed in many different core experiments, is now well acknowledged. The above behaviour, which is due to two-phase flow coupling in condensing systems at low interfacial tension (IFT) conditions, was simulated using a 3D pore network model. The steady-dynamic bond network model developed for this purpose was also equipped with a novel anchoring technique, which was based on the equivalent hydraulic length concept adopted from fluid flow through pipes. The available rock data on the co-ordination number, capillary pressure, absolute permeability, porosity and one set of measured relative permeability curves were utilised to anchor the capillary, volumetric and flow characteristics of the constructed network model to those properties of the real core sample. Then the model was used to predict the effective permeability values at other IFT and velocity levels. There is a reasonable quantitative agreement between the predicted and measured relative permeability values affected by the coupling rate effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号