首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnetic behaviour of nanoparticles of antiferromagnetic artificial ferritin has been investigated by 57Fe M?ssbauer absorption spectroscopy and magnetization measurements, in the temperature range 2.5-250 K and with magnetic fields up to 7 T. Samples containing nanoparticles with an average number of 57Fe atoms ranging from 400 to 2 500 were studied. By analysing the magnetic susceptibility and zero field M?ssbauer data, the anisotropy energy per unit volume is found, in agreement with some of the earlier studies, to have a value typical for ferric oxides, i.e. a few 105 ergs/cm3. By comparing the results of the two experimental methods at higher fields, we show that, contrary to what is currently assumed, the uncompensated magnetization of the ferritin cores in the superparamagnetic regime does not follow a Langevin law. For magnetic fields below the spin-flop field, we propose an approximate law for the field and temperature variation of the uncompensated magnetization, which was early evoked by Néel but has so far never been applied to real antiferromagnetic systems. More generally, this approach should apply to randomly oriented antiferromagnetic nanoparticles systems with weak uncompensated moments. Received 20 January 2000  相似文献   

2.
We report on a nuclear magnetic resonance (NMR) study of ultrananocrystalline diamond (UNCD) materials produced by detonation technique. Analysis of the 13C and 1H NMR spectra, spin-spin and spin-lattice relaxation times in purified UNCD samples is presented. Our measurements show that UNCD particles consist of a diamond core that is partially covered by a sp 2-carbon fullerene-like shell. The uncovered part of outer diamond surface comprises a number of hydrocarbon groups that saturate the dangling bonds. Our findings are discussed along with recent calculations of the UNCD structure. Significant increase in the spin-lattice relaxation rate (in comparison with that of natural diamond), as well as stretched exponential character of the magnetization recovery, are attributed to the interaction of nuclear spins with paramagnetic centers which are likely fabrication-driven dangling bonds with unpaired electrons. We show that these centers are located mainly at the interface between the diamond core and shell.  相似文献   

3.
Kaolin clay samples were mixed with various amounts of Fe2O3 powder. The influence of this magnetic impurity on NMR relaxation and diffusion measurements on the water in this porous material was investigated. The NMR relaxation measurements showed a nearly mono-exponential decay, leading to the conclusion that the pore size distribution of the clay samples is either narrow and/or that the pores are interconnected very well. Both the longitudinal and the transverse relaxation rate depend linearly on the concentration of the Fe2O3 impurity. The NMR diffusion measurements revealed that the Fe2O3 causes internal magnetic field gradients that largely exceed the maximum external gradient that could be applied by our NMR apparatus (0.3 T/m). Additional SQUID measurements yielded the magnetization and magnetic susceptibility of the samples at the magnetic field strength used in the NMR measurements (0.8 T). A theoretical estimate of the internal magnetic field gradients leads to the conclusion that the water in the porous clay samples cannot be described by the commonly observed motional averaging regime. Probably an intermediate or a localization regime is induced by the large internal gradients, which are estimated to be on the order of 1 to 10 T/m in the pore volume and may exceed 1000 T/m at the pore surface.  相似文献   

4.
The pulsed NMR method is applied to an analysis of a complicated structure of inhomogeneous internal fields in a ferromagnetic crystal. Proton magnetic resonance in the Ising ferromagnet TbES at a temperature range from 1.6 K down to 35 mK is studied at frequencies of 10–35 MHz. A complicated picture of static and fluctuating internal magnetic fields in the crystal is presented. Interatomic distances are shown to have an uncertainty of the order of 0.2% due to defects in the crystal lattice. The fluctuations of internal magnetic fields produced by thermal excitation and spin-spin relaxation of Tb3+ ions give rise to the effective nuclear magnetic relaxation: 1/T1(2)~exp (δ/kT), where δ is the energy splitting of the lowest Tb3+ quasi-doublet. The rate of these fluctuations in TbES at low temperatures is approximately equal to 2×107 s?1 being independent of temperature and magnetic field.  相似文献   

5.
Goudemond  I.P.  Hill  G.J.  Keartland  J.M.  Hoch  M.J.R.  Saunders  G.A. 《Hyperfine Interactions》1999,120(1-8):545-550
31P NMR measurements have been used to study the dynamics of magnetic rare earth ions in the stable metaphosphate systems (R2O3)x(X2O3)0.25-x(P2O5)0.75, with R≡Er3+, Nd3+ and Gd3+, for varying concentrations x, where X denotes a nonmagnetic rare earth buffer. Broad EPR spectra are observable at liquid helium temperatures but it is not possible to measure the paramagnetic relaxation time directly. Electronic relaxation parameters and crystal field splittings have been inferred from the NMR relaxation data. Nuclei situated near paramagnetic ion sites experience shifts in resonance frequency due to the local field produced by the ion. The nuclear resonance line is inhomogeneously broadened with decreasing temperature and disappears abruptly at temperatures which depend on the magnetic ion present, its concentration and the magnitude of the applied magnetic field. A discussion of the line broadening process is presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
We used proton ( 1H nuclear magnetic relaxation (NMR) dispersions to study the molecular dynamics in the isotropic phase and mesophases (nematic and columnar hexagonal) of a supermesogenic octapode formed by laterally connecting calamitic mesogens to an inorganic silsesquioxane cube through flexible spacers. The dispersions of the spin-lattice relaxation time (T1) are interpreted through relaxation mechanisms used for the study of molecular dynamics in low-molar-mass liquid crystals but adapted to the case of liquid crystalline supermolecules. At high frequencies (above 10MHz) the behaviour of the T1 with the Larmor frequency is similar for all phases and is ascribed to local reorientations and/or rotations. At intermediate and low frequencies (below 10MHz) our results show notable differences in the T1 behaviour with respect to the mesophases. The nematic (N) and isotropic (Iso) phases’ low-frequency results are similar and are interpreted for both phases in terms of order director fluctuations (ODF), revealing that even in the isotropic phase local nematic order is detected by proton NMR relaxometry. Local nematic order in the Iso phase is interpreted in terms of the presence of nematic cybotactic clusters induced by the interdigitation of mesogens that is promoted by the silsesquioxane octapode molecular structure. In the columnar hexagonal (Col h phase, the T1 dispersions show that elastic columnar deformations (ECD) dominate the nuclear magnetic relaxation below 10MHz. This result shows that the columnar packing of the octapode clearly restricts the collective fluctuations of the mesogenic units inspite of their local nematic order.  相似文献   

7.
We present detailed data and analysis of the effects of Zn substitution on the planar Cu site in YBa2Cu3O6+x (YBCO6+x) as evidenced from our 89Y NMR measurements on oriented powders. For x << 1x \ll 1 we find additional NMR lines which are associated with the Zn substitution. From our data on the intensities and temperature dependence of the shift, width, and spin-lattice relaxation rate of these resonances, we conclude that the spinless Zn 3d 10 state induces local moments on the near-neighbour (nn) Cu atoms. Additionally, we conjecture that the local moments actually extend to the farther Cu atoms with the magnetization alternating in sign at subsequent nn sites. We show that this analysis is compatible with ESR data taken on dilute Gd doped (on the Y site) and on neutron scattering data reported recently on Zn substituted YBCO6 + x. For optimally doped compounds 89Y nn resonances are not detected, but a large T-dependent contribution to the 89Y NMR linewidth is evidenced and is also attributed to the occurence of a weak induced local moment near the Zn. These results are compatible with macroscopic magnetic measurements performed on YBCO6 + x samples prepared specifically in order to minimize the content of impurity phases. We find significant differences between the present results on the underdoped YBCO6 + x samples and 27Al NMR data taken on Al3+ substituted on the Cu site in optimally doped La2CuO4. Further experimental work is needed to clarify the detailed evolution of the impurity induced magnetism with hole content in the cuprates.  相似文献   

8.
《Current Applied Physics》2014,14(3):383-388
The magnetic properties and the electronic structures of a rare-earth aluminum intermetallic compound CeAl2 are investigated by magnetic susceptibility measurements and 27Al pulsed nuclear magnetic resonance (NMR) techniques. The magnetic susceptibility is strongly temperature-dependent, following a Curie–Weiss law down to ∼12 K, and shows an antiferromagnetic transition at 4 K. The 27Al NMR spectra show a typical powder pattern for a nuclear spin I of 5/2 with the second-order nuclear quadrupole interaction at high temperature and an additional large dipolar broadening between the 4f electron spins of cerium and the 27Al nuclear spins at low temperature. The 27Al NMR Knight shift follows the same temperature dependence as the magnetic susceptibility, suggesting that the 27Al NMR Knight shift originates from the transferred hyperfine field of the Ce 4f electron spins with the hyperfine coupling constant of A = +5.7 kOe/μB. The spin-lattice relaxation rate 1/T1 is roughly proportional to temperature, as with most non-magnetic metals at high temperature, and then strongly temperature-dependent, increasing rapidly with a peak near the antiferromagnetic transition temperature and decreasing at lower temperature. The temperature dependence of the Korringa ratio K, however, suggests that the antiferromagnetic spin fluctuation signature, which is an enhancement in the Korringa ratio, is washed out owing to the geometrical cancellation of Ce 4f fluctuations at the Al sites.  相似文献   

9.
Positive muon spin relaxation experiments have been conducted on the heavy-fermion superconductor UPt3 in both the normal and superconducting states for zero, transverse, and longitudinally applied magnetic fields. Below 6 K in zero applied field, the μ+ relaxation rate is approximately twice that expected from195Pt nuclear dipolar relaxation alone. Transverse- and longitudinal-field measurements show that the observe relaxation rate depends on magnetic field and is quasistatic in origin. It is suggested that the onset of very weak (≈10−3 μB/U atom) magnetic ordering below approximately 6 K is responsible for the observed increase in the relaxation rate. μ+ Knight shift measurements in the normal state of UPt3 show a temperature dependent shift Kμ which tracks the bulk susceptibility X. From the Kμ vs. X plot, a μ+ hyperfine field of approximately 100 Oe/μB is extracted.  相似文献   

10.
1H nuclear magnetic resonance (NMR) chemical shift, relaxation and diffusion coefficient measurements were carried out to study the influence of pH (from 8.0 to 6.1) on the low-affinity binding of ibuprofen (IBP), a nonsteroidal anti-inflammatory drug, to human serum albumin (HSA). The study demonstrated that the binding affinity of IBP to HSA increases when the solution is lowered below the physiological values. The increased binding capacity of IBP to HSA at lower pH is attributed to an increase in the number of (likely hydrophobic) low-affinity binding sites, made available upon HSA base-to-neutral conformation transition. With a fast reversible and site-independent binding model, the number of binding sites of the IBP-HSA complex, calculated from the relaxation data, was 15±2 at pH 8.0 to 22±1 at pH 6.8.  相似文献   

11.
NMR and NQR spectra and spin-lattice relaxation measurements carried out in LASCO and YBCO-type crystals are presented and analyzed in order to derive insights on the correlations and spin-dynamics of the Cu2+ ions and on the microscopic mechanisms of high-T c superconductivity. As an illustrative example on how the magnetic correlation length and spin dynamics properties can be extracted from the relaxation rateW, the35Cl NMR data in the two-dimensional Heisenberg system Sr2CuCl2O2, around the paramagnetic-antiferromagnetic (PA-AF) transition are first considered. Then the139La NQR relaxation measurements in La2?xSrxCuO4 are briefly reviewed and it is shown how a simple picture of localized Cu2+ magnetic moments, whose spin fluctuation times are controlled by the charge defects induced by the doping, leads in a direct way to quantitative estimates for the progressive shift, on cooling, of the spectral density of the low-frequency spin excitations towards the high frequency range. This phenomenon can be described in terms of effective spin at the Cu2+ ions, and its similarities with the analogous effect of progressive delocalization in Heavy Fermions systems are pointed out. Thus, the superconducting transition appears to occur in an unconventional Fermi liquid with AF correlations among itinerant pseudoparticles, possibly involving a mechanism not directly related to the magnetic correlated dynamics. In fact, a universal behavior of the relaxation rates as a function of temperature is observed, regardless of the transition temperatureT c. The independence ofT c from the low frequency static and dynamical spin properties is also indicated by89Y Knight shifts and from63Cu relaxation rates in systems like YBa2Cu4O8 (Y124), whereT c can be changed by atomic substitutions and by controlling the oxygen stoichiometry. The effect of an external magnetic field on the correlated spin dynamics of the AF Fermi liquid is investigated and from a comparison of Cu NQR relaxation and NMR relaxation in oriented powder of YBCO and LASCO it is shown that the external field has the small but unambiguous effect of depressing the relaxation rates aboveT c, besides strongly enhancing them in the superconducting phase. A maximum in the ratio \({{W\left( {NQR} \right)} \mathord{\left/ {\vphantom {{W\left( {NQR} \right)} {W\left( {\vec H\left\| {\vec c} \right.} \right)}}} \right. \kern-0em} {W\left( {\vec H\left\| {\vec c} \right.} \right)}}\) is thus observed around 80 K, either in LASCO or in YBCO, again indicating that the transition could be driven by a mechanism not directly involving the spin dynamic properties. To study the role of the fluxions belowT c 89Y NMR shifts and spectra in oriented powders of YBCO are analyzed. Information on the spin susceptibility and on the structure of the vortex lattice is obtained. In addition, from the temperature behavior of the linewidth a motional narrowing related to flux melting is evidenced. The effective correlation time for the vortex motion is derived and it is discussed why μ+SR cannot detect it in view of the different rigid-lattice line broadening.  相似文献   

12.
The aim of the present study was to apply nuclear magnetic resonance (NMR) relaxation measurements for understanding the microstructure evolution of cement paste during hydration. Ordinary Portland cement powder was mixed with double-distilled water, and hydration process was analyzed via 1H proton NMR spin–spin relaxation time. In order to induce strong modification of the rate of hydration, water-to-cement ratio, curing temperature and cement fineness were varied. The evolution of the NMR spin–spin relaxation time, T 2, of hydrating water versus the hydration time was monitored from the very first few minutes after the mixing up to several hours. Authors' address: Marcella Alesiani, Department of Physics, University La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy  相似文献   

13.
The compound [Fe2L(H2O)4] (ClO4)4.H2O which contains pairs of Fe3+ ions within a binucleating macrocycle derived from Schiff base condensation of 2,6-diacetylpyridine and 1,3-diamino-2-hydroxy-propane has been studied by magnetic susceptibility measurements and57Fe Mössbauer spectroscopy between 4.2 K and 300 K, and its crystal structure determined. The spectra show relaxation effects at all temperatures. Spectra taken at 4.2 K in applied fields of about 3 T showed thatV zz is positive and η~0. The spectra were fitted using a stochastic model of a magnetic hyperfine field relaxing parallel to thez axis, giving relaxation times of 10?9?10?10 s.  相似文献   

14.
We have studied the hydration dependence of the internal protein dynamics of hen egg white lysozyme by naturally abundant13C and1H nuclear magnetic resonance (NMR) relaxation. NMR relaxation timesT 1, off-resonanceT 1p and proton-decoupled on-resonanceT 1p (only for carbon expriments) were measured in the temperature range from 0 to 50°C. The spectral resolution in carbon cross-polarization magic angle spinning spectrum allows to treat methine, methylene and methyl carbons separately, while proton experiments provide only one integral signal from all protons at a time. The relaxation times were quantitatively analyzed by the well-established correlation function formalism and model-free approach. The whole set of the data could be adequately described by a model assuming three types of motion having correlation times around 10?4, 10?9 and 10?12 s. The slowest process originated from correlated conformational transitions between different energy minima, the intermediate process could be identified as librations within one energy minimum, and the fastest one is a fast rotation of methyl protons the symmetry axis of methyl groups. A comparison of the dynamic behavior of lysozyme and polylysine obtained from a previous study (A. Krushelnitsky, D. Faizullin, D. Reichert, Biopolymers 73, 1–15, 2004) reveals that in the dry state both biopolymers are rigid on both fast and slow time scales. Upon hydration, lysozyme and polylysine reveal a considerable enhancement of the internal mobility, however, in different ways. The side chains of polylysine are more mobile than those of lysozyme, whereas for the backbone a reversed picture is observed. This difference correlates with structural features of lysozyme and polylysine discussed in detail. Due to the presence of a fast spin diffusion, the analysis of proton relaxation data is a more difficult task. However, our data demonstrate that the correlation functions of motion obtained from carbon and proton experiments are substantially different. We explained this by the fact that these two types of NMR relaxation experiments probe the motion of different internuclear vectors. The comparison of the proton data with our previous results on proton relaxation timesT 1 measured over a wide temperature range indicates that at low temperatures lysozyme undergoes structural rearrangements affecting the amplitudes and/or activation energies of motions.  相似文献   

15.
Pulsed 11B NMR measurements performed on an aSi: (B,H) film containing ~10 atomic % B reveal the presence of two distinct boron sites. The spin-spin relaxation time T2 is frequency independent and of a magnitude which indicates that the boron is clustered rather than uniformly distributed. The large quadrupolar coupling inferred from the NMR linewidth strongly suggests that most of the boron in aSi: (B,H) does not exist in tetrahedral sites but is threefold coordinated.  相似文献   

16.
A study is made into the temperature dependence of residual polarization of negative muons in crystalline silicon with the concentration of impurity of the n-and p-types ranging from 8.7×1013 to 4.1× 1018 cm?3. The measurements are performed in a magnetic field of 1000 G transverse to the muon spin, in the temperature range from 4.2 to 300 K. The form of the temperature dependence of the relaxation rate v of the magnetic moment of the μAl0 acceptor in silicon is determined. For a nondegenerate semiconductor, the relaxation rate depends on temperature as vT q (q ≈ 3). A variation in the behavior of the temperature dependence and a multiple increase in the relaxation rate are observed in the range of impurity concentration in excess of 1018 cm?3. The importance of phonon scattering and spin-exchange scattering of free charge carriers by an acceptor from the standpoint of relaxation of the acceptor magnetic moment is discussed. The constant of hyperfine interaction in an acceptor center formed by an atom of aluminum in silicon is estimated for the first time: |A hf (Al)/2π| ~ 2.5×106s?1.  相似文献   

17.
The nuclear spin-lattice relaxation of59Co in amorphous Fe-Co-B alloys was studied by NMR andthe results were compared with nuclear orientation measurements. The NMR relaxation rates were evaluated taking into account the electric quadrupole interaction. Then the results of both methods are in good agreement. It was confirmed that the spin-lattice relaxation is independent of the external magnetic field in the magnetically saturated samples andit was found that it does not depend on Co concentration.  相似文献   

18.
Paramagnetic defects of a new type with a concentration of about 1015 cm?3 are shown to be generated during the plastic deformation of isotope-rich (72%, 76% 29Si) silicon crystals at a temperature of 950°C. The electron paramagnetic resonance (EPR) spectra of these defects are anisotropic and have a significant width (up to 1 kOe). The nonuniform broadening of the EPR lines is caused by the variation of the internal magnetic field in correlated defect clusters. The nuclear magnetic resonance (NMR) spectra of the deformed crystals consist of Pake doublets split by nuclear spin-spin interaction. The broadening of the NMR spectra is caused by nuclear dipole-dipole relaxation.  相似文献   

19.
Magnetic resonance measurements have been performed on the ion conducting complex poly(ethylene oxide)4.5NaClO. Low temperature23Na NMR spectra suggest a highly symmetric environment for the Na-ions as evidenced by the absence of quadrupole broadening. Proton spin-lattice relaxation measurements provide an estimate of ~4×10?10 sec for the polymer chain motional correlation time at T = 69C. Correlation times of tumbling paramagnetic probe molecule have been extracted from EPR spectra of15N-enriched TANOL-doped complex. Changes in polymer chain mobility above T = 120C are inferred from the results and may be consistent with previous scanning calorimetry measurements.  相似文献   

20.
A simple approach to deriving motional dynamics information of protein and peptide side chains by using13C NMR relaxation data is presented. By using linear approximation of internal rotational correlation functions, simple equations for relating side-chain conformation, bond rotational amplitudes, and rotational correlation coefficients with different NMR relaxation parameters have been obtained. Auto- and cross-correlation spectral densities are considered, and it is shown that proton-coupled13C NMR relaxation measurements allow detailed motional information to be obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号