首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A simple, rapid and sensitive reverse phase liquid chromatography-diode array detector method has been developed and validated for the determination of isoliquiritigenin in rat plasma using acetanilide as an internal standard. The plasma was deproteinized with acetonitrile and separated from the aqueous layer by adding sodium chloride. The mobile phase was acetonitrile, 0.05 M potassium dihydrogen phosphate and triethylamine (50:50:0.5, v/v/v) (pH 2.00). Detection wavelength was set at 242 nm during 0–5 min and 362 nm during 5–9 min. The limit of quantification was 0.019 μg mL?1. The mean accuracy was 96.851–98.140%. Extract recoveries at concentration of 0.038, 0.625, 1.250, 5.000 and 20.000 μg mL?1 were 82.740, 80.814, 80.920, 80.978 and 81.103%, respectively. The validated method was successfully applied to the pharmacokinetic study of ISL in rat plasma after intravenous administration.  相似文献   

2.
A stability-indicating hydrophilic interaction liquid chromatography (HILIC) method has been developed and validated for the quantitative determination of Brimonidine tartrate (BT) formulated as an ophthalmic solution. Isocratic separation was achieved using an acetonitrile-buffer mixture (92:8, v/v) at pH 7.1 on an unmodified silica column (250 × 4.6 mm, 5 μm). The drug was subjected to oxidative, hydrolytic, photolytic and thermal stress conditions and complete separation was achieved for the parent compound and degradation products. The influence of acetonitrile, pH and ionic strength of the buffer was studied. Linearity range and recoveries for BT were 100–400 μg mL?1 and 100.12%, respectively. The method was validated for BT and indicated that the method was sufficiently sensitive with a limit of detection at 0.005 μg mL?1 and a limit of quantitation at 0.02 μg mL?1, respectively.  相似文献   

3.
A simple, isocratic, stability-indicating liquid chromatographic method for quantitative determination of curcumin was successfully developed. The chromatographic separations were achieved using a Hi-Q-Sil C18; 4.6 mm × 250 mm and 10 μm particle size column employing acetonitrile and acetate buffer (pH 3.0; 60: 40, v/v) as the mobile phase. The analyte was subjected to acidic, basic, oxidative, thermal and photo degradation. The method was validated with respect to linearity, precision, accuracy, limit of detection and limit of quantification. Curcumin was detected by UV-Vis detector at 425 nm whereas the degradation products were detected at 280 nm. The method was linear over the concentration range of 1–10 μg mL?1. The limit of detection was found to be 0.06 μg mL?1 and the quantification limit was 0.21 μg mL?1. Considerable degradation of the analyte was observed when it was subjected to alkaline conditions. Accuracy, evaluated as recovery, was in the range of 97–103%. Intra-day precision and intermediate precision showed relative standard deviations <1% and <2% respectively.  相似文献   

4.
A stability-indicating reversed-phase LC method for analysis of aceclofenac and paracetamol in tablets and in microsphere formulations has been developed and validated. The mobile phase was 80:20 (v/v) methanol–phosphate buffer (10 mM at pH 2.5 ± 0.02). UV detection was at 276 nm. The method was linear over the concentration ranges 16–24 and 80–120 μg mL?1 for aceclofenac and paracetamol, respectively, with recovery in the range 100.9–102.22%. The limits of detection and quantitation for ACF were 0.0369 and 0.1120 μg mL?1, respectively; those for PCM were 0.0631 and 0.1911 μg mL?1, respectively.  相似文献   

5.
A simple and novel LC method has been developed for determination of isepamicin (ISP) in rat plasma, an aminoglycoside antibiotic agent. After protein precipitation and clean-up procedure to remove lipophilic contaminants, ISP is derivatized by pre-column with 9-fluorenylmethyl chloroformate for fluorescence detection. Chromatographic separations are achieved using a C18 column and mobile phase consisting of water and acetonitrile (68/32, v/v). Amikacin was used as an internal standard. The calibration curve was linear over a concentration range of 0.625–15 μg mL?1. The limit of quantification was 0.45 μg mL?1. The intra- and inter-day variabilities of ISP were both less than 5%. Both derivatives were stable for at least a week at ambient condition. This assay procedure should have useful application in therapeutic drug monitoring of ISP. The limit of detection was 0.10 μg mL?1. The specificity, assay linearity, low level assay linearity and assay repeatability were also investigated. The established method provides a reliable bioanalytical method to carry out isepamicin pharmacokinetics in rat plasma.  相似文献   

6.
A simple and sensitive LC method for the quantitative determination of gemfibrozil in human plasma samples is described. Mometasone furoate was used as the internal standard. Plasma samples were pretreated by protein precipitation using methanol. Separation was performed at 40 °C on a YMC® ODS-A reverse phase column (5 μm particle size, 150 mm × 4.6 mm i.d.) using 0.2% (v/v) triethylamine in water (adjusting to pH 4.0 with phosphoric acid) and acetonitrile (45:55, v/v) as mobile phase which was delivered at 1.5 mL min?1. Ultraviolet detection was performed at 230 nm. The linear concentration range for gemfibrozil was 0.25–50 μg mL?1. The detection limit of this method was 0.1 μg mL?1. Intra- and inter-assay RSD ranged from 0.63 to 2.04% and 1.37 to 4.27%, respectively. The method was sensitive, simple and repeatable enough to be used in pharmacokinetic studies.  相似文献   

7.

A simple and rapid open-vessel focused microwave-assisted extraction (FMAE) method followed by LC analysis was developed for the determination of ketoprofen lysine salt in the presence of methyl p-hydroxybenzoate and propyl p-hydroxybenzoate preservatives in topical cream. Extraction were performed in acetone/potassium dihydrogenphosphate (25 mM, pH 3.0) (70:30 v/v) by reaching a target temperature of 65 °C in a 10 min linear ramp. The chromatographic separation was performed on a Discovery RP-Amide C16 column (250 × 4.6 mm I.D., 5 μm particle size). The optimal mobile phase consisted of acetonitrile/potassium dihydrogen phosphate 25 mM adjusted to pH 3.0 with phosphoric acid (50:50 v/v). The complete analytical procedure was validated with regard to limit of quantification, linearity, precision and accuracy. The method was linear over the concentration range of 0.08–0.12 mg mL−1; the relative standard deviations of intra- and inter-day assays were 1.9–2.3 and 1.8% respectively. The limit of quantification was 0.54 μg mL−1. The proposed method shows many advantages as short extraction time, little solvent consumption without requiring further sample clean-up steps before liquid chromatographic analysis and is proposed for vast scale screening of cream dosage forms aimed to the detection of counterfeit and substandard drugs.

  相似文献   

8.
A simple, rapid and sensitive column liquid chromatographic method was developed and validated to measure simultaneously the amount of ascorbic acid and phenolic acids at single wavelength (240 nm) in order to assess drug release profiles and drug-excipients compatibility studies for a new sustained release tablet formulation and its subsequent stability studies. A combined isocratic and linear gradient reversed-phase LC method was carried out at 240 nm. Quantification was achieved with reference to the external standards. The linearity for concentrations between 0.042 and 0.150 mg mL?1 for ascorbic acid, 0.084–0.250 mg mL?1 for chlorogenic acid, 0.053–0.360 mg mL?1 for caffeic acid, and 0.016–0.250 mg mL?1 for ferulic acid (r > 0.99 for all analytes) were established. The recovery of the active ingredients from the samples was at the range of 92.3–102.9%. Intra- and inter-day precisions were less than 2.5%. The limits of detection and quantification were 8 and 24 μg mL?1 for ascorbic acid, 18 and 54 μg mL?1 for chlorogenic acid, 37 and 112 μg mL?1 for caffeic acid, and 11 and 34 μg mL?1 for ferulic acid. The determination of the four active ingredients was not interfered by the excipients of the products. Samples were stable in the release mediums (37 °C) at least for 12 h.  相似文献   

9.
Iriflophenone 2-O-α-rhamnopyranoside (IP2R) is one of the main bioactive constituents of the leaves of Aquilaria sinensis (Lour.) Gilg, used in traditional Chinese medicines. A simple, rapid, and sensitive reversed-phase high-performance liquid chromatographic method has been developed for analysis of IP2R in rat plasma after intravenous administration. The analyte was extracted from plasma samples with methanol as deproteinization agent. Analysis was performed on an 250 mm × 4.6 mm i.d., 5-μm particle, C18 column with a 8 mm × 4.6 mm i.d., 5-μm particle, RP-18 guard column; the mobile phase was acetonitrile–H2O–acetic acid 22:78:0.01 (v/v) at a flow-rate of 1.0 mL min?1. UV detection was at 289 nm. The calibration plot was linear in the range 0.01–33.33 μg mL?1 (r = 0.9997, n = 5) in rat plasma. The lower limits of detection and quantification were 0.004 and 0.01 μg mL?1. Intra-day and inter-day precision were 1.18–3.96 and 1.29–2.81%, respectively. Average extraction recovery from plasma was more than 95%. This assay method was successfully used to study the pharmacokinetics of IP2R in rats after a single dose of 25 mg kg?1 by intravenous administration; the plasma concentration–time curve of IP2R conformed to a two-compartment open model.  相似文献   

10.
A specific and accurate high-performance liquid chromatographic method for analysis of cinnamic acid (CA) and paeonol (PN) in rat plasma has been developed and validated. Plasma samples were pretreated by protein precipitation with methanol, and the supernatant was injected for reversed-phase separation on a C18 column with acetonitrile–0.1% phosphoric acid 24:76 (v/v) as mobile phase at a flow-rate of 1.0 mL min?1. Phenylbutyric acid was used as the internal standard. Good linear relationships were obtained between response and concentration in the range 0.130–52.0 μg mL?1 (r = 0.9980) and 0.1785–71.4 μg mL?1 (r = 0.9950) for CA and PN, respectively. Intra-day and inter-day assay precision (RSD, n = 6) at three concentrations was not above 15.1% for either CA and PN, and accuracy was from 94.3 to 104.7% and from 103.3 to 113.1% for CA and PN, respectively. Mean recovery of CA and PN from plasma samples was 87.5 and 86.8%, respectively, and recovery of the internal standard at a concentration of 1.00 mg mL?1 was 88.5%. Results from a stability study suggested CA and PN were stable under the experimental conditions used. Finally, the validated method was successfully applied to a pharmacokinetic study of CA and PN in rats after intragastric administration of Guizhi–Fuling capsule. The results obtained would be very useful for evaluation of the clinical efficacy of GFC.  相似文献   

11.
A simple, rapid, and stability-indicating reversed-phase high-performance liquid chromatographic (LC) method for analysis for dutasteride has been successfully developed. Chromatography was performed on a 150 mm × 4.6 mm C18 column with acetonitrile–water 60:40 (v/v) as isocratic mobile phase at 1.0 mL min?1. Ultraviolet detection of dutasteride was at 210 nm. Its retention time was approximately 10 min and its peak was symmetrical. Response was a linear function of concentration over the range 0.2–1 μg mL?1 (R 2 = 0.997) and the limits of detection and quantitation were was 0.05 and 0.10 μg mL?1, respectively. The method was validated for linearity, precision, repeatability, sensitivity, and selectivity. Selectivity was validated by subjecting dutasteride stock solution to photolytic, acidic, basic, oxidative, and thermal degradation. The peaks from the degradation products did not interfere with that from dutasteride. The method was used to quantify dutasteride in pharmaceutical preparations.  相似文献   

12.
A simple and reliable liquid chromatographic method has been developed and validated for the determination of cefdinir in human urine and capsule samples. A chromatographic separation was achieved on a C18 column using a mobile phase consisting of potassium dihydrogen phosphate (10 mM, pH 4.5)–acetonitrile (90:10, v/v). Quantitation was achieved with UV detection at 285 nm, based on peak area with linear calibration curve at a concentration range of 0.7–39 µg mL?1. This method was successfully applied for the establishment of an urinary excretion pattern after oral dose.  相似文献   

13.
A simple and rapid HPLC method using phenacetin (PHN) as internal standard has been developed for simultaneous determination of acetaminophen, caffeine, and chlorphenamine maleate in the product compound paracetamol and chlorphenamine maleate granules. Separation and quantitation were achieved on a 250 mm × 4.6 mm, 5 μm particle, C18 column. The mobile phase was methanol 0.05 mol L?1 aqueous KH2PO4 solution, 45:55 (v/v), containing 0.1% triethylamine and adjusted to pH 3.6 by addition of phosphoric acid; the flow rate was 1.0 mL min?1. Detection of all compounds was by UV absorbance at 260 nm and elution of the analytes was achieved in less than 12 min. The linearity, accuracy, and precision of the method were acceptable to good over the concentration ranges 6.4–153.6 μg mL?1 for acetaminophen, 5.0–120.0 μg mL?1 for caffeine, and 9.6–230.4 μg mL?1 for chlorphenamine maleate.  相似文献   

14.
A GC-MS method with HP-5MS capillary column was developed for the simultaneous determination of underivatized flunitrazepam, clonazepam, alprazolam, diazepam and ketamine from drinks by extraction with chloroform: isopropanol 1:1 (v/v). All linearity ranges were between 50 and 1,000 μg mL?1 for all compounds both in beer and in peach juice. Limit of detection was between 1.3 and 34.2 μg mL?1, limit of quantification was between 3.9 and 103.8 μg mL?1, the range of recoveries was 73.0 and 112.6% for all drugs in both beverages. The reported method was sensitive, rapid, and suitable for the analysis of the spiked drinks as evidence of sexual assault and robbery phenomena.  相似文献   

15.
This paper describes development and validation of a high-performance liquid chromatographic method for simultaneous analysis of tramadol hydrochloride (TR) and aceclofenac (AC) in a tablet formulation. When the combination formulation was subjected to ICH-recommended stress conditions, adequate separation of TR, AC, and the degradation products formed was achieved on a C18 column with 65:35 (v/v) 0.01 M ammonium acetate buffer, pH 6.5—acetonitrile as mobile phase at a flow rate of 1 mL min?1. UV detection was performed at 270 nm. The method was validated for specificity, linearity, LOD and LOQ, precision, accuracy, and robustness. The method was specific against placebo interference and also during forced degradation. The linearity of the method was investigated in the concentration ranges 15–60 μg mL?1 (r = 0.9999) for TR and 40–160 μg mL?1 (r = 0.9999) for AC. Accuracy was between 98.87 and 99.32% for TR and between 98.81 and 99.49% for AC. Because degradation products were well separated from the parent compounds, the method was stability-indicating.  相似文献   

16.
17.
The dicarbonyl compounds glyoxal, methylglyoxal, and dimethylglyoxal have been separated by capillary GC on a 30 m × 0.32 mm i.d. HP-5 column after precolumn derivatization with 2,3-diamino-2,3-dimethylbutane at pH 4. Chromatographic separation was complete in 6 min. Nitrogen was used as carrier gas at a flow rate of 2 mL min?1. Split injection was performed with a split ratio of 10:1 (v/v). The derivatives were monitored by flame-ionization detection, and linear calibration plots were obtained in the ranges 0.06–0.69, 0.05–1.01, and 0.07–1.33 μg mL?1 for glyoxal, methylglyoxal, and dimethylglyoxal, respectively; the respective detection limits were 20, 10, and 10 ng mL?1. Glyoxal and methylglyoxal were analyzed in serum and urine from diabetics and from healthy volunteers. Amounts of glyoxal and methylglyoxal in serum from diabetic patients were 0.19–0.33 and 0.20–0.29 μg mL?1, respectively, with respective relative standard deviations (RSD) of 0.8–1.0 and 0.8–1.1%. Amounts of glyoxal and methylglyoxal in serum from healthy volunteers were 0.05–0.08 and 0.04–0.10 μg mL?1, respectively, with respective RSD of 0.9–1.2 and 1.0–1.2%. Levels of glyoxal and methylglyoxal in urine from diabetic patients were 0.18–0.40 and 0.25–0.36 μg mL?1, respectively.  相似文献   

18.
A rapid, selective and convenient liquid chromatography–mass spectrometric method for the simultaneous determination of paracetamol and caffeine in human plasma was developed and validated. Analytes and theophylline [internal standard (I.S.)] were extracted from plasma samples with diethyl ether-dichloromethane (3:2, v/v) and separated on a C18 column (150 × 4.6 mm ID, 5 μm particle size, 100 Å pore size). The mobile phase consisted of 0.2% formic acid–methanol (60:40, v/v). The assay was linear in the concentration range between 0.05 and 25 μg mL?1 for paracetamol and 10–5,000 ng mL?1 for caffeine, with the lower limit of quantification of 0.05 μg mL?1 and 10 ng mL?1, respectively. The intra- and inter-day precision for both drugs was less than 8.1%, and the accuracy was within ±6.5%. The single chromatographic analysis of plasma samples was achieved within 4.5 min. This validated method was successfully applied to study the pharmacokinetics of paracetamol and caffeine in human plasma.  相似文献   

19.
A method has been developed to determine chlorogenic acid and hydrochlorothiazide simultaneously in Zhenju Jiangya tablets by HPLC using an isocratic mode and UV detection. A solution of acetonitrile-0.4% phosphoric acid (13:87, v/v) was used as mobile phase. Results showed that the two compounds were well separated. Chlorogenic acid and hydrochlorothiazide had good linearities in the range of 0.64~6.4 μg mL?1 and 0.08~0.16 mg mL?1, respectively with average recoveries of 96.5~99.3 and 97.7~101.0%.  相似文献   

20.
A isocratic, selective and accurate LC method of analysis of mexiletine in pharmaceutical preparations has been developed and validated. The method is based on derivatization of mexiletine with 4-chloro-7-nitrobenzofurazan in pH 9.0 borate buffer to yield a yellow product. Chromatography was performed on a C18 column (150 × 4.6 mm i.d.) with acetonitrile–water 80:20 (v/v) as mobile phase at a flow rate of 1.0 mL min?1. UV–visible absorbance detection was performed at 458 nm. The retention time of the mexiletine derivative was 4.10 min, and response was a linear function of concentration in the range 0.5–4.0 μg mL?1 (r = 0.9998). The limits of detection and quantification were 0.05 and 0.15 μg mL?1, respectively. Method validation revealed precision, sensitivity, and robustness were acceptable. Low RSD values are indicative of high precision, and high recovery values are indicative of the accuracy of the method. Results obtained by use of the proposed method for analysis of the mexiletine content of pharmaceutical a preparation were compared with those obtained by use of the official method. The method has been used for analysis of pharmaceutical preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号