首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The use of cup-loading for sample application has become widely used in two-dimensional electrophoresis (2-DE) for resolution of basic proteins, but no side-by-side quantitative study has been published which compares cup-loading with the alternative passive and active rehydration methods to fully promote one type of loading method over another. Replicate 2-D gels from each loading method were quantitatively evaluated for gel-to-gel reproducibility using IPG 6-11 strips and semipreparative protein loads (300 microg). Gels were stained with SYPRO Ruby and analyzed with PDQuest. An inexpensive home-made assembly for cup-loading was used with the Protean IEF Cell for separation of whole cell extracts from the archaeon, Sulfolobus solfataricus. Cup-loading was determined to be far superior for IPG 6-11 separations than active or passive rehydration methods. Cup-loading consistently produced the greatest number of detectable spots, the best spot matching efficiency (56%), lowest spot quantity variations (28% coefficient of variation, CV), and the best-looking gels qualitatively. The least satisfactory results were obtained with active rehydration, followed closely by passive rehydration in off-line tubes. Passive rehydration experiments, performed using an on-line isoelectric focusing (IEF) tray, produced comparable spot numbers to cup-loading (84%), with 55% of the spots having higher intensity but 10% more spot quantity variance than cup-loading.  相似文献   

2.
Horizontal two-dimensional (2-D) electrophoresis with immobilized pH gradients (IPG) in the first dimension for buffer soluble proteins and for complex proteins solubilized in the presence of Nonidet P-40 (G?rg et al., Electrophoresis 1987, 8, 45-51), has been extended to analyze basic proteins of yeast cells focused under non-equilibrium and equilibrium conditions. Transient state isoelectric focusing (IEF) in IPG gels revealed sample smearing and background staining, displaying horizontal streaks in the resultant 2-D patterns. Inclusion of 0.5% carrier ampholytes (CA) to the IPG gel (IPG-CA), resulted in the formation of many sharp protein bands after transient state IEF with resultant distinct spots in the 2-D patterns; however, resolution was poor and the gel contained heavy background staining. With prolonged focusing time, background staining disappeared and there was less difference in the final steady state IEF patterns obtained with IPG and IPG-CA. Reduction of the Immobiline concentration to one third the manufacturer's recommended amount did not improve IEF resolution with respect to streaking and background staining under either transient state or equilibrium conditions. In general, spot intensities were less on 2-D gels using diluted IPG gels than with "standard" IPG gels. Optimization of 2-D electrophoresis with IPGs in the first dimension was strongly related to IEF conditions. The use of IPG gels focused to equilibrium should not only improve inter-gel reproducibility and resolution but also the quality of the final 2-D patterns with respect to background staining and horizontal streaking.  相似文献   

3.
This paper quantificationally probes into time-varying migration processes of moving neutralization boundary (MNB) on immobilized pH gradient (IPG) strip in ammonia-rehydration buffers. The time-varying migration processes are determined by both time-varying dissociation equilibria of ammonia and position-varying pH environments formed by immobilized carrier ampholytes (CAs) on the IPG strip. Thus, the local dissociation equilibria of ammonia and the position-varying pH are introduced into the recursion equation of position of MNB migrations. The theoretical position-time curves and the velocity-time curves of MNB migrations obtained by the recursion approach were satisfactorily validated by a series of images of boundary migrations from the IPG-MNB experiments by using rehydration buffers with different ammonia concentrations on pH 3-6 IPG strips. The results achieved herein have significant evidence to a quantificational understanding of the mechanism of MNB and IEF.  相似文献   

4.
A method for the characterization of proteins separated by isoelectric focusing in carrier ampholytes (CA-IEF) or immobilized pH gradient (IPG) gels by in-gel digestion and mass spectrometry is described. Proteins are detected by an improved imidazole-Sodium dodecyl sulfate (SDS)-zinc staining adapted for IEF and IPG gels. Sensitivity is close to that of mass spectrometry-compatible silver staining, but simpler and faster. Proteins were digested in imidazole-SDS-zinc stained CA-IEF and IPG gels in the presence of a zinc-chelating agent. Mass spectra were clearly interpretable as carrier ampholytes which were efficiently removed before digestion; high-sequence coverage that allowed isoform characterization was obtained by analyzing both the aqueous and the organic phase extracts.  相似文献   

5.
2-DE proved to be a key technology in protein science since the two orthogonal separation dimensions are capable of protein isoform separation. Recently, Agilent introduced the OFFGEL 3100 fractionator for in solution IEF (off-gel) of proteins with the help of a 12- or 24-well frame. With this instrument also conventional focusing in IPG strips after passive in-tray rehydration can be performed. In this study, two novel IEF applications using the OFFGEL electrophoresis were developed. First, a sample cup was built and a cup-loading method for the OFFGEL device was implemented. Applying proteins via cup resulted in higher reproducibility and less protein loss compared with conventional in-tray rehydration loading. Especially, the recovery of basic and high-molecular-mass proteins seems to be favored by cup loading. These effects are more pronounced with low microgram sample amounts. Second, a 48-well OFFGEL frame was developed, which doubles the resolution of the commercially available 24-well frame. It is capable of separating proteins with small pI differences and shows potential for isoform/PTM separation.  相似文献   

6.
Li Y  DeVoe DL  Lee CS 《Electrophoresis》2003,24(1-2):193-199
Isoelectric focusing (IEF) separations, in general, involve the use of the entire channel filled with a solution mixture containing protein/peptide analytes and carrier ampholytes for the creation of a pH gradient. Thus, the preparative capabilities of IEF are inherently greater than most microfluidics-based electrokinetic separation techniques. To further increase sample loading and therefore the concentrations of focused analytes, a dynamic approach, which is based on electrokinetic injection of proteins/peptides from solution reservoirs, is demonstrated in this study. The proteins/peptides continuously migrate into the plastic microchannel and encounter a pH gradient established by carrier ampholytes originally present in the channel for focusing and separation. Dynamic sample introduction and analyte focusing in plastic microfluidic devices can be directly controlled by various electrokinetic conditions, including the injection time and the applied electric field strength. Differences in the sample loading are contributed by electrokinetic injection bias and are affected by the individual analyte's electrophoretic mobility. Under the influence of 30 min electrokinetic injection at constant electric field strength of 500 V/cm, the sample loading is enhanced by approximately 10-100 fold in comparison with conventional IEF.  相似文献   

7.
J Asakawa 《Electrophoresis》1988,9(9):562-568
Two-dimensional electrophoresis (2-DE) with immobilized pH gradient (IPG) gels in capillary tubes was used in the first-dimensional isoelectric focusing (IEF) for the separation of human platelet polypeptides. Two types of IPG tube gels, pH ranges 4-8 and 7-10, containing 8 M urea, 1% Nonidet P-40 and 0.1% pH 3.5-10 Ampholine carrier ampholytes (CA) were prepared by a simple method not requiring special equipment. The addition of CA to both gel and sample solutions was essential in the tube gel IPG system. Proteins were visualized by a modification of Wray's silver-staining technique. The degree of resolution and the number of spots observed on an IPG 2-DE gel with pH 4-8 were comparable with those obtained with O'Farrell's high-resolution 2-DE. Approximately 200 basic polypeptides, which are difficult to separate by conventional CA-based IEF 2-DE or the non-equilibrium pH gradient system, were well resolved by 2-DE with a pH 7-10 IPG tube gel in the first-dimension. The gel patterns with either pH gradient 4-8 or 7-10 were highly reproducible among gels prepared and run simultaneously. These results demonstrated the potential and usefulness of the 2-DE system with IPG gels in capillary tubes.  相似文献   

8.
Narrow pH cuts of carrier ampholytes (CAs), originally designed for IEF, have been used as BGEs in CE. Their physicochemical properties, rather high buffering capacity and low conductivity, allow very efficient protein separations under high electric field strength. Due to their isoelectric properties, CA BGEs are expected to present a low ionic concentration and consequently a low loading capacity. In this study, we developed a simple method that allows the estimation of the loading capacity of a UV-absorbing BGE by CE. We first characterized in terms of loading capacity, classical ammediol-chromate UV-absorbing BGEs and a 10 mM histidine solution, a classical isoelectric buffer. Then, the loading capacity of four different CA-based BGEs has been assessed. Experimental results have shown that the CA-based buffers were presenting a rather high loading capacity, comparable to classical buffer ones and far higher than the one of the 10 mM histidine solution.  相似文献   

9.
Shim J  Dutta P  Ivory CF 《Electrophoresis》2007,28(4):572-586
A 2-D finite-volume model is developed to simulate nonlinear IEF in complex microgeometries. This mathematical model is formulated based on the mass conservation and ionic dissociation relations of amphoteric macromolecules, charge conservation, and the electroneutrality condition. Based on the 2-D model, three different separation cases are studied: an IPG in a planar channel, an ampholyte-based pH gradient in a planar channel, and an ampholyte-based pH gradient in a contraction-expansion channel. In the IPG case, cacodylic acid (pK(1) = 6.21) and Tris (pK(1) = 8.3) are used as the acid and base, respectively, to validate the 2-D IEF model. In the ampholyte-based pH gradient cases, IEF is performed in the pH range, 6.21-8.3 using 10 ampholytes in the planar channel and 20 ampholytes in the contraction-expansion channel. The numerical results reveal different focusing efficiencies and resolution in the narrow and wide sections of the contraction-expansion channel. To explain this, the expressions for separation resolution and peak concentrations of separands in the contraction-expansion channel are presented in terms of the channel shape factor. In a 2-D planar channel, a focused band remains straight all the time. However, in a contraction-expansion channel, initially straight bands take on a crescent profile as they pass through the trapezoidal sections joining the contraction and expansion sections.  相似文献   

10.
This paper describes a simple new approach toward improving resolution of two-dimensional (2-D) protein gels used to explore the mammalian proteome. The method employs sample prefractionation using solution-phase isoelectric focusing (IEF) to split the mammalian proteome into well-resolved pools. As crude samples are thus prefractionated by pI range, very-narrow-pH-range 2-D gels can be subsequently employed for protein separation. Using custom pH partition membranes and commercially available immobilized pH gradient (IPG) strips, we maximized the total separation distance and throughput of seven samples obtained by prefractionation. Both protein loading capacity and separation quality were higher than the values obtained by separation of fractionated samples on narrow-pH-range 2-D gels; the total effective IEF separation distance was ~82 cm over the pH range pH 3–10. This improved method for analyzing prefractionated samples on narrow-pH-range 2-D gels allows high protein resolution without the use of large gels, resulting in decreased costs and run times.   相似文献   

11.
In the field of proteomics the need to detect low-abundance cellular components, such as regulatory proteins, is of critical importance. Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) is one of the most commonly used separation tools for these biological investigations. In this paper we report an alternative micropreparative 2-D PAGE sample application method, called the "paper bridge loading" method. This method makes it possible to apply a larger sample volume to commercially available immobilized pH gradient (IPG) strips. The Vh products required for focusing are only marginally longer than those used in analytical experiments. The method was compared to traditional cup loading and in-gel rehydration. With 18 cm long narrow-range Immobiline DryStrip pH 4.5-5.5, the "paper bridge" method allowed the application of 10 mg human plasma proteins compared to 3 mg with traditional loading methods. The corresponding figures using Escherichia coli sample was found to be 6 mg and less than 2 mg, respectively. The paper bridge method also showed the best results in terms of spot resolution and separation of high molecular weight proteins.  相似文献   

12.
Intact protein masses can be measured directly from immobilized pH gradient (IPG) isoelectric focusing (IEF) gels loaded with mammalian and prokaryotic samples, as demonstrated here with murine macrophage and Methanosarcina acetivorans cell lysates. Mass accuracy and resolution is improved by employing instruments which decouple the desorption event from mass measurement; e.g., quadrupole time-of-flight instruments. MALDI in-source dissociation (ISD) is discussed as a means to pursue top-down sequencing for protein identification. Methods have been developed to enzymatically digest all proteins in an IEF gel simultaneously, leaving the polyacrylamide gel attached to its polyester support. By retaining all gel pieces and their placement relative to one another, sample handling and tracking are minimized, and comparison to 2-D gel images is facilitated. MALDI-MS and MS/MS can then be performed directly from dried, matrix-treated IPG strips following whole-gel trypsin digestion, bottom-up methodology. Side-to-side proteomics, highlighting the link between virtual and classical 2-D gel electrophoresis, is introduced to describe a method whereby intact masses are measured from one side (the IEF gel), while proteins are identified based on analyses performed from the other side (the SDS-PAGE gel).  相似文献   

13.
A preparation of chicken liver (basic) fatty acid binding protein was purified to homogeneity in multicompartment electrolyzers with isoelectric membranes. Large amounts of the isoelectric point (pI) 9.7 protein were collected into a compartment delimited by pI 8.8 and 11.0 membranes. The protein thus purified produced crystals which diffract to higher resolution than those obtained by purification via preparative isoelectric focusing (IEF) in soluble carrier ampholytes. In addition, a novel orthorhombic form with a different molecular packing was obtained. It is hypothesized that, when using conventional IEF, traces of carrier ampholytes could adhere to the protein, particularly in the hydrophobic ligand-binding pocket, rendering the interpretation of the electron density maps difficult. Multicompartment electrolyzers do not present this drawback, since they are based on insoluble buffering species.  相似文献   

14.
Isoelectric focusing (IEF) of human serum transferrin allows splitting of the protein pattern into three forms corresponding to the diferric, monoferric and apoform. A detailed analysis of this pattern, performed on transferrin at different degrees of iron saturation, demonstrated that free Ampholine carrier ampholytes (CA) alter the expected results, always giving a complex pattern with multiple bands. In particular, the monoferric form appears to be the predominant one, regardless of the starting saturation of transferrin. In contrast to IEF-CA, the new technique of IEF in immobilized pH gradients (IPG), shows a much simpler pattern with the same samples. Moreover, the different transferrin forms are focused at the same pI values as in IEF-CA but the pattern appears to correspond to the expected distribution. IPG analysis gives a pattern similar to IEF-CA when free Ampholine CA are added either to the samples and/or as electrode solutions. A chelating action of Ampholine CA on Fe+3 might be responsible for these effects, while Immobilines, due to their different chemical nature or to the different focusing procedure, are not able to interact with iron.  相似文献   

15.
Salts formed from strong acids and bases (e.g. NaCl, Na2SO4, Na2HPO4), present in a protein sample applied to an immobilized pH gradient (IPG) gel, induce protein modification (oxidation of iron moiety in hemoglobin) already at low levels (5 mM) and irreversible denaturation (precipitation) at higher levels (greater than 50 mM). This effect is due to production of strongly alkaline cationic and strongly acidic anionic boundaries formed by the splitting of the salt's ion constituents, as the protein zone is not and can not be buffered by the surrounding gel until it physically migrates into the gel matrix. Substitution of "strong" salts in the sample zone with salts formed by weak acids and bases, e.g.. Tris-acetate, Tris-glycinate, Good's buffers such as (N-[2-acetamido]-2-iminodiacetic acid (ADA), (2-[(2-amino-2-oxoethyl)-amino] ethanesulfonic acid (ACES), (3-[N-morpholino]propane sulfonic acid (MOPS), essentially abolishes both phenomena, oxidation and irreversible denaturation. Suppression of "strong" salt's effects is also achieved by adding, to the sample zone, carrier ampholytes in amounts proportional to the salt present (e.g. by maintaining a salt: carrier ampholytes molar ratio of at least 1:1). This suppression is due to the strong buffering power of the added carrier ampholytes, able to counteract drastic pH changes in the two moving boundaries. A reduction of these deleterious effects of strong salts is also achieved when the IPG run is performed at low voltage for a prolonged time (4 h at 500 V instead of only 1 h at 500 V, before switching to high-voltage settings). Guidelines are given for trouble-free IPG operations.  相似文献   

16.
Efficient separation method is a crucial part of the process in which components of highly complex biological sample are identified and characterized. Based on the principles of recently newly established electrophoretic method called divergent flow IEF (DF IEF), we have tested the DF IEF instrument which is able to operate without the use of background carrier ampholytes. We have verified that during separation and focusing of sample consisting of high numbers of proteins (yeast lysate and wheat flour extract), the pH gradient of preparative DF IEF can be created by autofocusing of the sample components themselves without any addition of carrier ampholytes. In DF IEF, the proteins are separated, desalted and concentrated in one step. The fractions of yeast lysate sample, collected at the DF IEF output and subjected to gel IEF, contained the zones of proteins gradually covering the pI values from 3.7 to 8.5. In our experimental arrangement, the highest number of proteins has been found in fractions with pI values around 5.3 as detected by polyacrylamide gel IEF with CBB staining. During DF IEF, the selected protein bands have been concentrated up to 16.8‐fold.  相似文献   

17.
Shim J  Dutta P  Ivory CF 《Electrophoresis》2008,29(5):1026-1035
The effects of mobility corrections on carrier ampholytes are studied at various ampholyte concentrations to understand protein behavior during IEF. IEF simulations are conducted in the presence of 25 biprotic carrier ampholytes within a pH range of 6-9 after applying the Onsager-Debye-Hückel correction to the carrier ampholytes. Two model proteins with ten charge states but without ionic strength corrections are allowed to focus under an electric field of 300 V/cm in a 1 cm long channel. The IEF simulation results show that higher ionic strengths (50 - 100 mM) cause significant changes in the transient movement as well as the final focused profiles of both ampholytes and proteins. The time required for a single, well-defined peak to form increases with ionic strength when Onsager corrections are applied to the carrier ampholytes. For a particular ampholyte concentration, the space-averaged conductivity does not change during the final focusing stage, but the magnitude of space averaged conductivity is different for different ampholyte concentration. The simulation results also reveal that at steady-state ionic strength profiles remain flat throughout the channel except at the locations of proteins where a significant change in ampholyte concentration is obtained.  相似文献   

18.
The use of quasi-isoelectric buffers consisting of narrow pH cuts of carrier ampholytes (NC) has been investigated to limit protein adsorption on capillary walls during capillary zone electrophoresis experiments. To quantify protein adsorption on the silica surface, a method derived from that of Towns and Regnier has been developed. alpha-Lactalbumin (14 kDa, pI 4.8) and alpha-chymotrypsinogen A (25 kDa, pI 9.2) have been used as model proteins. Acidic narrow pH cuts of carrier ampholytes (NC, pH 3.0) obtained from fractionation of Serva 4-9 carrier ampholytes were used as BGE in bare-silica capillaries, and allowed to decrease significantly protein adsorption, as compared to experiments performed with classical formate buffer. The use of NC as BGE appeared to be as efficient as the use of polydimethylacrylamide coating to prevent protein adsorption. This increase of protein recovery when using NC was attributed to the interaction of carrier ampholytes with the silica surface, leading to a shielding of the capillary wall.  相似文献   

19.
A novel procedure, droplet-tap mode, has been devised for sample application for two-dimensional gel electrophoresis (2DE) expression profiles. The sample was loaded by evenly distributed tapping of droplets of the sample on to the rehydration buffer (RB) and then lowering the strip on to the solution surface. At normal loading concentrations, the number of spots obtained was increased by approximately one-third by this new approach compared with the rehydration loading procedure. The method also resulted in significantly improved resolution compared with cup loading when high concentrations of proteins were present, indicating its potential usefulness in micropreparative separation. In addition, recovery of the proteins confirmed that protein uptake was enhanced by use of this method. By enabling improved performances in 2DE, the proposed procedure has much potential for sample loading to meet the requirements of global proteome analysis.Electronic Supplementary Material Electronic Supplementary Material found in  相似文献   

20.
A new isoelectric focusing (IEF) system for two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) has been proposed. In this system, a super-soft and tough IEF gel was achieved by casting polyacrylamide gel down to 2.0% T using a loose multifilament string (LMS) of nylon as a gel support. The IEF apparatus for the LMS-gel, fabricated from acrylic boards, had a cooling water chamber, and eliminated the need of electrode solutions by directly connecting the two ends of individual gels to platinum electrodes. The carrier ampholyte-generated pH gradients using the new IEF system was stable over a long duration of time and a wide range of voltages, and the IEF time became shorter using a 2.0% T gel than using a 4.0% T gel. Also, the LMS-gels prepared in different runs exhibited excellent reproducibility. The new IEF system was applied to 2-D PAGE of a chicken skeletal muscle extract, and it was found that the protein loading capacity, protein entry into the LMS-gels, and protein transfer efficiency from the first-dimensional to the second-dimensional gels were significantly improved by using a low-concentration (2.5% T) gel. Also, proteins of high molecular weight of more than 200 kDa were observed in the 2-D maps, and therefore the new IEF system has a very good potential to be applied for fast 2-D PAGE of high molecular-weight proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号