首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In this study, the nonlinear aeroelastic stability of wind turbine blade with bending–bending–twist coupling has been investigated for composite thin-walled structure with pretwist angle. The aerodynamic model used here is the differential dynamic stall nonlinear ONERA model. The nonlinear aeroelastic equations are reduced to ordinary equations by Galerkin method, with the aerodynamic force decomposition by strip theory. The nonlinear resulting equations are solved by a time-marching approach, and are linearized by small perturbation about the equilibrium point. The nonlinear aeroelastic stability characteristics are investigated through eigenvalue analysis, nonlinear time domain response, and linearized time domain response.  相似文献   

2.
Nonlinear dynamic behaviors of an aeroelastic airfoil with free-play in transonic air flow are studied. The aeroelastic response is obtained by using time-marching approach with computational fluid dynamics (CFD) and reduced order model (ROM) techniques. Several standardized tests of transonic flutter are presented to validate numerical approaches. It is found that in time-marching approach with CFD technique, the time-step size has a significant effect on the calculated aeroelastic response, especially for cases considering both structural and aerodynamic nonlinearities. The nonlinear dynamic behavior for the present model in transonic air flow is greatly different from that in subsonic regime where only simple harmonic oscillations are observed. Major features of the responses in transonic air flow at different flow speeds can be summarized as follows. The aeroelastic responses with the amplitude near the free-play are dominated by single degree of freedom flutter mechanism, and snap-though phenomenon can be observed when the air speed is low. The bifurcation diagram can be captured by using ROM technique, and it is observed that the route to chaos for the present model is via period-doubling, which is essentially caused by the free-play nonlinearity. When the flow speed approaches the linear flutter speed, the aeroelastic system vibrates with large amplitude, which is dominated by the aerodynamic nonlinearity. Effects of boundary layer and airfoil profile on the nonlinear responses of the aeroelastic system are also discussed.  相似文献   

3.
In this paper, the effects of structural nonlinearity due to free-play in both leading-edge and trailing-edge outboard control surfaces on the linear flutter control system are analyzed for an aeroelastic model of three-dimensional multiple-actuated-wing. The free-play nonlinearities in the control surfaces are modeled theoretically by using the fictitious mass approach. The nonlinear aeroelastic equations of the presented model can be divided into nine sub-linear modal-based aeroelastic equations according to the different combinations of deflections of the leading-edge and trailing-edge outboard control surfaces. The nonlinear aeroelastic responses can be computed based on these sub-linear aeroelastic systems. To demonstrate the effects of nonlinearity on the linear flutter control system, a single-input and single-output controller and a multi-input and multi-output controller are designed based on the unconstrained optimization techniques. The numerical results indicate that the free-play nonlinearity can lead to either limit cycle oscillations or divergent motions when the linear control system is implemented.  相似文献   

4.
激波主导流动下壁板的热气动弹性稳定性理论分析   总被引:2,自引:0,他引:2  
叶柳青  叶正寅 《力学学报》2018,50(2):221-232
针对激波主导流动下弹性壁板的热气动弹性稳定性分析问题,建立了基于当地活塞流理论的分析模型,并用数值仿真方法来验证其正确性. 首先基于Hamilton原理和Von-Karman大变形理论,建立壁板的热气动弹性运动方程,其中假设壁板受热后温度均匀分布,激波前后区域的气动力模型采用当地一阶活塞流理论;利用Galerkin方法将具有连续参数系统的偏微分颤振方程离散为有限个自由度的常微分方程;基于李雅普诺夫间接法将非线性颤振方程组在平衡位置处进行线化,再用Routh-Hurwits判据来判断线性系统的稳定性,从而来推论出非线性颤振系统的气动弹性稳定性. 在时域中采用龙格--库塔法对非线性颤振方程进行数值积分,得到壁板非线性颤振响应的时间历程,与理论分析结果进行对比. 研究结果表明,壁板受到斜激波冲击时,更容易发生颤振失稳,并且激波强度越大,极限环幅值和频率越大;激波主导流场中的壁板失稳边界不同于传统单纯超声速气流中壁板颤振的失稳边界;只有在斜激波前后不同的动压值都满足颤振稳定性边界的条件下,壁板才可能保持其气动弹性稳定性.   相似文献   

5.
翼型颤振压电俘能器的输出特性研究   总被引:1,自引:0,他引:1  
田海港  单小彪  张居彬  隋广东  谢涛 《力学学报》2021,53(11):3016-3024
压电俘能器能够为自然界中低功率的微机电系统持续供能. 为了模拟机翼的沉浮?俯仰二自由度运动和有效俘获气动弹性振动能量, 本文提出一种新颖的翼型颤振压电俘能器. 基于非定常气动力模型, 推导翼型颤振压电俘能器流?固?电耦合场的数学模型. 建立有限元模型, 模拟机翼的沉浮?俯仰二自由度运动, 获得机翼附近的涡旋脱落和流场特性. 搭建风洞实验系统, 制作压电俘能器样机. 利用实验验证理论和仿真模型的正确性, 仿真分析压电俘能器结构参数对其气动弹性振动响应和俘获性能的影响. 结果表明: 理论分析、仿真模拟和实验研究获得的输出电压具有较好的一致性, 验证建立数学和仿真模型的正确性. 仿真分析获得机翼附近的压力场变化云图, 表明交替的压力差驱动机翼发生二自由度沉浮?俯仰运动. 当风速超过颤振起始速度时, 压电俘能器发生颤振, 并表现为极限环振荡. 当偏心距为0.3和风速为16 m/s时, 可获得最大输出电压为17.88 V和输出功率为1.278 mW. 功率密度为7.99 mW/cm3, 相比较于其他压电俘能器, 能实现优越的俘获性能. 研究结果对设计更高效的翼型颤振压电俘能器提供重要的指导意义.   相似文献   

6.
Nonlinear dynamic aeroelasticity of composite wings in compressible flows is investigated. To provide a reasonable model for the problem, the composite wing is modeled as a thin walled beam (TWB) with circumferentially asymmetric stiffness layup configuration. The structural model considers nonlinear strain displacement relations and a number of non-classical effects, such as transverse shear and warping inhibition. Geometrically nonlinear terms of up to third order are retained in the formulation. Unsteady aerodynamic loads are calculated according to a compressible model, described by indicial function approximations in the time domain. The aeroelastic system of equations is augmented by the differential equations governing the aerodynamics lag states to derive the final explicit form of the coupled fluid-structure equations of motion. The final nonlinear governing aeroelastic system of equations is solved using the eigenvectors of the linear structural equations of motion to approximate the spatial variation of the corresponding degrees of freedom in the Ritz solution method. Direct time integrations of the nonlinear equations of motion representing the full aeroelastic system are conducted using the well-known Runge–Kutta method. A comprehensive insight is provided over the effect of parameters such as the lamination fiber angle and the sweep angle on the stability margins and the limit cycle oscillation behavior of the system. Integration of the interpolation method employed for the evaluation of compressible indicial functions at any Mach number in the subsonic compressible range to the derivation process of the third order nonlinear aeroelastic system of equations based on TWB theory is done for the first time. Results show that flutter speeds obtained by the incompressible unsteady aerodynamics are not conservative and as the backward sweep angle of the wing is increased, post-flutter aeroelastic response of the wing becomes more well-behaved.  相似文献   

7.
The identification of nonlinear aeroelastic systems based on the Volterra theory of nonlinear systems is presented. Recent applications of the theory to problems in computational and experimental aeroelasticity are reviewed. Computational results include the development of computationally efficient reduced-order models (ROMs) using an Euler/Navier–Stokes flow solver and the analytical derivation of Volterra kernels for a nonlinear aeroelastic system. Experimental results include the identification of aerodynamic impulse responses, the application of higher-order spectra (HOS) to wind-tunnel flutter data, and the identification of nonlinear aeroelastic phenomena from flight flutter test data of the active aeroelastic wing (AAW) aircraft.  相似文献   

8.
Based on the piston theory of supersonic flow and the energy method, the flutter motion equations of a two-dimensional wing with cubic stiffness in the pitching direction are established. The aeroelastic system contains both structural and aerodynamic nonlinearities. Hopf bifurcation theory is used to analyze the flutter speed of the system. The effects of system parameters on the flutter speed are studied. The 4th order Runge-Kutta method is used to calculate the stable limit cycle responses and chaotic motions of the aeroelastic system. Results show that the number and the stability of equilibrium points of the system vary with the increase of flow speed. Besides the simple limit cycle response of period 1, there are also period-doubling responses and chaotic motions in the flutter system. The route leading to chaos in the aeroelastic model used here is the period-doubling bifurcation. The chaotic motions in the system occur only when the flow speed is higher than the linear divergent speed and the initial condition is very small. Moreover, the flow speed regions in which the system behaves chaos axe very narrow.  相似文献   

9.
Flight tests of modern high-performance fighter aircraft reveal the presence of limit cycle oscillation (LCO) responses for aircraft with certain external store configurations. Conventional linear aeroelastic analysis predicts flutter for conditions well beyond the operational envelope, yet these store-induced LCO responses occur at flight conditions within the flight envelope. Several nonlinear sources may be present, including aerodynamic effects such as flow separation and shock-boundary layer interaction and structural effects such as stiffening, damping, and system kinematics. No complete theory has been forwarded to accurately explain the mechanisms responsible. This research examines a two degree-of-freedom aeroelastic system which possesses kinematic nonlinearities and a strong nonlinearity in pitch stiffness. Nonlinear analysis techniques are used to gain insight into the characteristics of the behavior of the system. Numerical simulation is used to verify and validate the analysis. It is found that when system damping is low, the system clearly exhibits nonlinear interaction between aeroelastic modes. It is also shown that although certain applied forcing conditions may appear negligible, these same forces produce large amplitude LCOs under specific realizable circumstances.  相似文献   

10.
This paper aims to investigate aeroelastic stability boundary of subsonic wings under the effect of thrust of two engines. The wing structure is modeled as a tapered composite box-beam. Moreover, an indicial function based model is used to calculate the unsteady lift and moment distribution along the wing span in subsonic compressible flow. The two jet engines mounted on the wing are modeled as concentrated masses and the effect of thrust of each engine is applied as a follower force. Using Hamilton's principle along with Galerkin's method, the governing equations of motion are derived, then the obtained equations are solved in frequency domain using the K-method and the aeroelastic instability conditions are determined. The flutter analysis results of four example wings are compared with the experimental and analytical results in the literature and good agreements are achieved which validate the present model. Furthermore, based on several case studies on a reference wing, some attempts are performed to analyze the effect of thrust on the stability margin of the wing and some conclusions are outlined.  相似文献   

11.
This paper presents a coupled flap–lag–torsion aeroelastic stability analysis and response of a hingeless helicopter blade in the hovering flight condition. The boundary element method based on the wake eigenvalues is used for the prediction of unsteady airloads of the rotor blade. The aeroelastic equations of motion of the rotor blade are derived by Galerkin's method. To obtain the aeroelastic stability and response, the governing nonlinear equations of motion are linearized about the nonlinear steady equilibrium positions using small perturbation theory. The equilibrium deflections are calculated through the iterative Newton–Raphson method. Numerical results comprising steady equilibrium state deflections, aeroelastic eigenvalues and time history response about these states for a two-bladed rotor are presented, and some of them are compared with those obtained from a two-dimensional quasi-steady strip aerodynamic theory. Also, the effect of the number of aerodynamic eigenmodes is investigated. The results show that the three-dimensional aerodynamic formulation has considerable impact on the determination of both the equilibrium condition and lead-lag instability.  相似文献   

12.
超音速气流中受热曲壁板的非线性颤振特性   总被引:3,自引:0,他引:3  
基于von Karman 大变形理论及带有曲率修正的一阶活塞理论, 用Galerkin方法建立了超音速气流中受热二维曲壁板的非线性气动弹性运动方程; 采用牛顿迭代法计算得到由静气动载荷和热载荷引起的静气动弹性变形; 根据李雅谱诺夫间接法分析了壁板初始曲率与温升对颤振边界的影响; 对二维曲壁板的非线性气动弹性方程组进行数值积分求解,分析了动压参数对受热二维曲壁板分岔特性的影响, 给出了典型状态下曲壁板非线性颤振响应的时程图与相图. 分析结果表明对小初始曲率的曲壁板, 温升对其静气动弹性变形影响较大, 且随着温升的增加其颤振临界动压急剧减小; 对具有较大初始曲率的曲壁板, 温升对其静气动弹性变形的影响较弱, 且随着温升的增加颤振临界动压基本保持不变. 初始几何曲率与气动热效应使得曲壁板具有复杂的动力学特性, 不再像平壁板一样, 经过倍周期分岔进入混沌, 而会出现由静变形状态直接进入混沌运动的现象, 且在混沌运动区域中还会出现静态稳定点或谐波运动, 在大曲率情况下, 曲壁板不会产生混沌运动, 而是幅值在一定范围内的极限带振荡.   相似文献   

13.
Nonlinear limit cycle oscillations of an aeroelastic energy harvester are exploited for enhanced piezoelectric power generation from aerodynamic flows. Specifically, a flexible beam with piezoelectric laminates is excited by a uniform axial flow field in a manner analogous to a flapping flag such that the system delivers power to an electrical impedance load. Fluid–structure interaction is modeled by augmenting a system of nonlinear equations for an electroelastic beam with a discretized vortex-lattice potential flow model. Experimental results from a prototype aeroelastic energy harvester are also presented. Root mean square electrical power on the order of 2.5 mW was delivered below the flutter boundary of the test apparatus at a comparatively low wind speed of 27 m/s and a chord normalized limit cycle amplitude of 0.33. Moreover, subcritical limit cycles with chord normalized amplitudes of up to 0.46 were observed. Calculations indicate that the system tested here was able to access over 17% of the flow energy to which it was exposed. Methods for designing aeroelastic energy harvesters by exploiting nonlinear aeroelastic phenomena and potential improvements to existing relevant aerodynamic models are also discussed.  相似文献   

14.
寇文军  邱志平 《力学学报》2011,43(1):221-226
基于含有参数不确定性的时域鲁棒颤振μ预测工具, 首先提出一种不确定多项式建模方法, 该方法通过线性分式变换(LFT)最终可以得到较低阶次不确定描述; 然后, 考虑到参数不确定问题中实μ(realμ)的计算复杂性, 又提出一种包含二分法的鲁棒颤振预测技术, 该方法是基于在一定飞行范围内飞行速度与气弹系统稳定性间的简单关系, 它能够避免鲁棒匹配点颤振预测中包含的高阶速度摄动块, 从而大大提高颤振预测的计算效率. 最后数值验证和对比表明了该方法的高效性.   相似文献   

15.
几何非线性是壁板颤振和大展弦比机翼气动弹性等问题的一个主要特征,在进行数值仿真分析时往往需要采用商业非线性有限元求解器,存在计算量大和耦合迭代策略不易控制等问题。本文发展了一种适用于几何非线性的结构动力学降阶模型(CSD-ROM),利用广义坐标的非线性多项式表征非线性内力,采用参数识别方法获取多项式系数,并通过增加额外的线性模态来改善模型预测精度。基于此方法,分别针对壁板颤振、切尖三角翼的CFD/CSD-ROM非线性颤振问题开展了时域响应分析。计算结果表明,通过CSD-ROM计算出的壁板颤振速度为590 m/s,颤振频率为174 Hz,与有限元结果误差分别为0.8%和1.7%。马赫数0.879时切尖三角翼的颤振动压预测结果为2.25 psi,与非线性有限元相比的误差为3.8%。本文采用的非线性和线性模态基底组合方法,在保证计算精度的基础上可有效降低训练样本数量,一定程度上可替代非线性有限元开展气动弹性分析。  相似文献   

16.
A fully nonlinear model of suspension bridges parameterized by one single space coordinate is proposed to describe overall three-dimensional motions. The nonlinear equations of motion are obtained via a direct total Lagrangian formulation and the kinematics, for the deck-girder and the suspension cables, feature the finite displacements of the associated base lines and the flexural and torsional rotations of the deck cross-sections assumed rigid in their own planes. The strain-displacement relationships for the generalized strain parameters, the elongations in the cables, the deck elongation, and the three curvatures, retain the full geometric nonlinearities. The proposed nonlinear model with its full extensional-flexural-torsional coupling is employed to study the torsional divergence caused by the static part of the wind-induced forces. Two suspension bridges are considered as case studies: the Runyang bridge (main span 1,490?m) and the Hu Men bridge (main span 888?m) in China. The evaluation of the onset of the static instability and the post-critical behavior takes into account the prestressed condition of the bridge subject to dead loads. The dynamic bifurcation that occurs at the onset of flutter is also studied accounting for the prestressed equilibrium state about which the equations of motion are obtained via an updated Lagrangian formulation. Such a bifurcation is investigated in the context of the parametric nonlinear model considering the model parameters of the Runyang Suspension Bridge together with its aeroelastic derivatives. The calculated critical wind speeds for the onset of the static and dynamic bifurcations are compared with the results obtained via linear analysis and the main differences are highlighted. Parametric sensitivity studies are carried out to assess the influence of the design parameters on the instabilities associated with the bridge aeroelastic response.  相似文献   

17.
两种湍流模型时域颤振计算方法研究   总被引:2,自引:2,他引:0  
采用时域计算分析方法进行了机翼跨音速颤振特性研究。在结构运动网格的基础上,采用格点格式有限体积方法进行空间离散和双时间全隐式方法进行时间推进求解雷诺平均N-S方程。针对流动粘性分别应用了SST湍流模型和SSG雷诺应力模型,通过对跨音速标模算例AGARD445.6机翼的计算结果与实验值的对比分析,其中应用SST湍流模型得到的颤振速度与实验值最为接近,特别是在跨音速段平均相对误差在3%以内;并且计算结果整体上反映了跨音速颤振"凹坑"物理特性,验证了方法的有效性。  相似文献   

18.
This paper aims the nonlinear aeroelastic analysis of slender wings using a nonlinear structural model coupled with the linear unsteady aerodynamic model. High aspect ratio and flexibility are the specific characteristic of this type of wings. Wing flexibility, coupled with long wingspan can lead to large deflections during normal flight operation of an aircraft; therefore, a wing in vertical/forward-afterward/torsional motion using a third-order form of nonlinear general flexible Euler–Bernoulli beam equations is used for structural modeling. Unsteady linear aerodynamic strip theory based on the Wagner function is used for determination of aerodynamic loading on the wing. Combining these two types of formulation yields nonlinear integro-differentials aeroelastic equations. Using the Galerkin’s method and a mode summation technique, the governing equations will be solved by introducing a numerical method without the need to adding any aerodynamic state space variables and the corresponding equations related to these variables of the problem. The obtained equations are solved to predict the aeroelastic response of the problem. The obtained results for a test case are compared with those of some other works and show a good agreement between results.  相似文献   

19.
基于气动力降阶模型的跨音速气动弹性稳定性分析   总被引:6,自引:0,他引:6  
基于离散型输入输出差分模型,运用非定常CFD方法训练信号,然后运用最小二乘方法进行参数辨识,得到降阶的非定常气动力模型,再将该离散差分模型转换为连续时间域内的状态方程。耦合气动状态方程和结构状态方程,得到耦合系统的气动弹性状态方程。求解不同动压下状态矩阵的特征值,根据根轨迹图分析系统的稳定性特性。分析结果与直接耦合CFD/CSD方法结果相吻合,可以计算跨音速非线性气动弹性问题。其计算效率比直接耦合CFD/CSD方法提高1~2个数量级。针对Isogai wing在跨音速出现的S型颤振边界进行了较为细致的分析,阐述了该现象是由于系统诱发颤振的分支随着速度(来流动压)的提高而发生转移所导致的。  相似文献   

20.
In this study, an improved nonlinear reduced-order model composed of a linear part and a nonlinear part is explored for transonic aeroelastic systems. The linear part is identified via the eigensystem realization algorithm and the nonlinear part is obtained via the Levenberg–Marquardt algorithm. The impulsive signal is chosen as the training signal for the linear part and the sinusoidal signal is used to determine the order of the linear part. The training signal for the nonlinear part is selected as the filtered white Gaussian noise with the maximal amplitude and frequency range to be designed via the aeroelastic responses. An NACA64A010 airfoil and an NACA0012 airfoil are taken as illustrative examples to demonstrate the performance of the presented reduced-order model in modeling transonic aerodynamic forces. The aeroelastic behaviors of the two airfoils are obtained via computational fluid dynamics to solve the Euler equation and the Navier–Stokes equation, respectively. The numerical results demonstrate that the presented reduced-order model can successfully predict the nonlinear aerodynamic forces with and without viscous flows. Moreover, the presented reduced-order model is capable of capturing the flutter velocity and modeling complex aeroelastic behaviors, including limit-cycle oscillations, beat phenomena and nodal-shaped oscillations at the transonic Mach numbers with high accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号