首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A set of fourteen Madeira wines comprising wines produced from four Vitis vinifera L. varieties (Bual, Malvasia, Verdelho and Tinta Negra Mole) that were 3, 6, 10 and 17 years old was analysed using HPLC and an electronic tongue (ET) multisensor system. Concentrations of 24 organic acids, phenolic and furanic compounds were determined by HPLC. The ET consisting of 26 potentiometric chemical sensors with plasticized PVC and chalcogenide glass membranes was used. Significance of the effects of age and variety on the ET response and wine composition with respect to the organic acids, phenolics and furanic derivatives were evaluated using ANOVA—Simultaneous Component Analysis (ASCA). Significance of the effects was estimated using a permutation test (1000 permutations). It was found that effects of age, grape variety and their interaction were significant for the HPLC data set and only the effect of age was significant for the ET data. Calibration models of the HPLC and ET data with respect to the wine age and of the ET data with respect to the concentration of the organic acids and phenolics were calculated using PLS1 regression. Models were validated using cross-validation. It was possible to predict wine age from HPLC and ET data with the accuracy in cross-validation of 2.6 and 1.8 years respectively. The ET was capable of detecting the following components (mean relative error in cross-validation is shown in the parentheses): tartaric (8%), citric (5%), formic (12%), protocatehuic (5%), vanillic (18%) and sinapic (14%) acids, catechin (6%), vanillin (12%) and trans-resveratrol (5%). The ET capability of predicting Madeira wine age with good accuracy (1.8 years) as well as quantify of some organic acids and phenolic compounds was demonstrated.  相似文献   

2.
In this paper a commercial electronic tongue (αAstree, Alpha M.O.S.) was applied for botanical classification and physicochemical characterization of honey samples. The electronic tongue was comprised of seven potentiometric sensors coupled with an Ag/AgCl reference electrode. Botanical classification was performed by PCA, CCA and ANN modeling on 12 samples of acacia, chestnut and honeydew honey. The physicochemical characterization of honey was obtained by ANN modeling and the parameters included were electrical conductivity, acidity, water content, invert sugar and total sugar. The initial reference values for the physicochemical parameters observed were determined by traditional methods. Botanical classification of honey samples obtained by ANN was 100% accurate while the highest correlation between observed and predicted values was obtained for electrical conductivity (0.999), followed by acidity (0.997), water content (0.994), invert sugar content (0.988) and total sugar content (0.979).All developed ANN models for rapid honey characterization and botanical classification performed excellently showing the potential of the electronic tongue as a tool in rapid honey analysis and characterization. The advantage of using such a technique is a simple sample preparation procedure, there are no chemicals involved and there are no additional costs except the initial measurements required for ANN model development.  相似文献   

3.
An electronic tongue (ET) based on pulse voltammetry has been used to predict the presence of nerve agent mimics in aqueous environments. The electronic tongue array consists of eight working electrodes (Au, Pt, Ir, Rh, Cu, Co, Ni and Ag) encapsulated on a stainless steel cylinder. Studies including principal component analysis (PCA), artificial neural networks (fuzzy ARTMAP) and partial least square techniques (PLS) have been applied for data management and prediction models. For instance the electronic tongue is able to discriminate the presence of the nerve agent simulants diethyl chlorophosphate (DCP) and diethyl cyanophosphate (DCNP) from the presence of other organophosphorous derivatives in water. Finally, PLS data analysis using a system of 3 compounds and 3 concentration levels shows a good accuracy in concentration prediction for DCP and DCNP in aqueous environments.  相似文献   

4.
An electronic tongue (ET) based on pulse voltammetry containing a set of eight metallic electrodes (Au, Pt, Ir, Rh, Cu, Co, Ni and Ag) encapsulated on a stainless steel cylinder has been used to discriminate and predict levels of nerve agent mimics in aqueous environments. Analysis including principal component analysis (PCA) and partial least square techniques (PLS) have been applied for data management and prediction models. A good discrimination from other organophosphorous derivatives was found for the nerve agent simulants diethyl-chlorophosphate (DCP) and diethyl-cyanophosphate (DCNP).  相似文献   

5.
It is shown that voltammetric measurements can be made in solutions of low conductivity and low dielectric permitivity by using appropriate microelectrodes, the oxidation of ferrocene in toluene+ acetonitrile being used to explore the behaviour. At high concentrations of acetonitrile, measurements can be made at low or zero concentrations of supporting electrolyte; with decreasing concentration of acetonitrile, increasing concentrations of supporting electrolyte are required to determine the voltammetric curves. Simple corrections for ohmic potential drops in the solution can be applied but the procedures fail for solutions of very low dielectric permittivity, probably because of ion-pair formation near the electrode surface.  相似文献   

6.
An electronic tongue (ET) based on potentiometric chemical sensors was assessed as a rapid tool for the quantification of bitterness in red wines. A set of 39 single cultivar Pinotage wines comprising 13 samples with medium to high bitterness was obtained from the producers in West Cape, South Africa. Samples were analysed with respect to a set of routine wine parameters and major phenolic compounds using Fourier transform infrared-multiple internal reflection spectroscopy (WineScan) and high-performance liquid chromatography, respectively. A trained sensory panel assessed the bitterness intensity of 15 wines, 13 of which had a bitter taste of medium to high intensity. Thirty-one wine samples including seven bitter-tasting ones were measured by the ET. Influence of the chemical composition of wine on the occurrence of the bitter taste was evaluated using one-way analysis of variance. It was found that bitter-tasting wines had higher concentrations of phenolic compounds (catechin, epicatechin, gallic and caffeic acids and quercetin) than non-bitter wines. Sensitivity of the sensors of the array to the phenolic compounds related to the bitterness was studied at different pH levels. Sensors displayed sensitivity to all studied compounds at pH 7, but only to quercetin at pH 3.5. Based on these findings, the pH of wine was adjusted to 7 prior to measurements. Calibration models for classification of wine samples according to the presence of the bitter taste and quantification of the bitterness intensity were calculated by partial least squares-discriminant analysis (PLS-DA) regression. Statistical significance of the classification results was confirmed by the permutation test. Both ET and chemical analysis data could discriminate between bitter and control wines with the correct classification rates of 94% and 91%, respectively. Prediction of the bitterness intensity with good accuracy (root mean square error of 2 and mean relative error of 6% in validation) was possible only using ET data.  相似文献   

7.
A student laboratory exercise in qualitative analysis has been developed to address student misconceptions associated with electrolyte and nonelectrolyte solutions. This exercise uses a previously reported, inexpensive, home-built conductivity meter to identify acid solutions. An additional short preparatory exercise provides students the opportunity to classify known solutions as strong, weak, or nonelectrolytes and gives students experience using a conductivity meter. These activities have been used successfully with both high school and introductory college chemistry students.  相似文献   

8.
We report an extensive nonequilibrium molecular dynamics investigation of the thermal conductivity of water using two of the most accurate rigid nonpolarizable empirical models available, SPC/E and TIP4P/2005. Our study covers liquid and supercritical states. Both models predict the anomalous increase of the thermal conductivity with temperature and the thermal conductivity maximum, hence confirming their ability to reproduce the complex anomalous behaviour of water. The performance of the models strongly depends on the thermodynamic state investigated, and best agreement with experiment is obtained for states close to the liquid coexistence line and at high densities and temperatures. Considering the simplicity of these two models the overall agreement with experiments is remarkable. Our results show that explicit polarizability and molecular flexibility are not needed to reproduce the anomalous heat conduction of water.  相似文献   

9.
In order to investigate the electron dynamics at the alizarin/I2-/TiO2 interface this study uses a novel state-of-the-art quantum-classical approach that combines time-dependent density functional theory with surface hopping in the Kohn-Sham basis. Representing the dye-sensitized semiconductor Gr?tzel cell with the I-/I3- mediator, the system addresses the problems of an organic/inorganic, molecule/bulk interface that are commonly encountered in molecular electronics, photovoltaics, and photoelectrochemistry. The processes studied include the relaxation of the injected electron inside the TiO2 conduction band (CB), the back electron transfer (ET) from TiO2 to alizarin, the ET from the surface to the electrolyte, and the regeneration of the neutral chromophore by ET from the electrolyte to alizarin. Developing a theoretical understanding of these processes is crucial for improving solar cell design and optimizing photovoltaic current and voltage. The simulations carried out for the entire system that contains many electronic states reproduce the experimental time scales and provide detailed insights into the ET dynamics. In particular, they demonstrate the differences between the optimized geometric and electronic structure of the system at 0 K and the experimentally relevant structure at ambient temperature. The relaxation of the injected electron inside the TiO2 CB, which affects the solar cell voltage, is shown to occur on a 100 fs time scale and occurs simultaneously with the electron delocalization into the semiconductor bulk. The transfer of the electron trapped at the surface to the ground state of alizarin proceeds on a 1 ps time scale and is facilitated by vibrational modes localized on alizarin. If the electrolyte mediator is capable of approaching the semiconductor surface, it can form a stable complex and short-circuit the cell by accepting the photoexcited electron on a subpicosecond time scale. The ET from TiO2 to both alizarin and the electrolyte diminishes the solar cell current. Finally, the simulations show that the electrolyte can efficiently regenerate the neutral chromophore. This is true even though the two species do not form a chemical bond and, therefore, the electronic coupling between them is weaker than in the TiO2-chromophore and TiO2-electrolyte donor-acceptor pairs. The chromophore-electrolyte coupling can occur both directly through space and indirectly through bonding to the semiconductor surface. The ET events involving the electrolyte are promoted primarily by the electrolyte vibrational modes.  相似文献   

10.
Electrochemical polymerisation of 2-aminofluorene, 2AF, was investigated in ethylalcohol/water mixture (3:2, v:v) in the presence of HClO4 as the supporting electrolyte via constant potential electrolysis, CPE. Prior to CPE, electrochemical behaviour of the monomer was investigated in the same solvent-electrolyte couple utilising cyclic voltammetry, CV. Electrochemical polymerisation of the monomer yielded insoluble, dark bluish-green, conducting polymer deposit on the electrode surface. Characterisation of the polymer film has been carried out using FT-IR spectroscopic technique and thermal behaviour was studied using differential scanning calorimetry, DSC. Spectroelectrochemical, SPEL, behaviour of the polymer on ITO working electrode was studied by recording the electronic absorption spectra, in situ, in monomer-free solution at different potentials and it is found that the film can be reversibly cycled between −0.1 and 1.1 V vs SCE. Paramagnetic behaviour of the polymer was monitored using in situ ESR spectroscopy. The temperature dependence of conductivity supported the Mott's variable range hopping, VRH, mechanism for poly(aminofluorene), PAF.  相似文献   

11.
12.
A potentiometric electronic tongue (ET) consisting of eight cross-sensitive chemical sensors and a standard pH electrode has been applied for analysis of simulated fermentation solutions typical for fermentation processes with Aspergillus niger. The electronic tongue has been found capable of simultaneous determination of ammonium, citrate and oxalate in complex media with good precision (typical error within 8%). The system preserved high sensitivity to the targeted substances also in the presence of sodium azide, which is commonly used for suppressing microbial activity in real-world fermentation samples. Sensor performance was fast and reproducible which promises well for routine application of the electronic tongue for fermentation process monitoring.  相似文献   

13.
Two relatively simple approaches are developed and used to calculate (predict) the standard interfacial electron-transfer (ET) rate constants (k degrees) of the Ru(NH3)6(3+/2+) couple dissolved in aqueous electrolyte solutions in contact with Au electrodes coated with self-assembled monolayers (SAMs) composed of HS(CH2)nOH as functions of both n and temperature. These approaches are suggested by the conclusion reached by Smalley et al. (J. Electroanal. Chem. 2006, 589, 1-6) that the interfacial ET rate of a solution-dissolved redox couple in contact with a SAM is, within 1 order of magnitude, the same as the (normalized) interfacial ET rate of a similar attached (as a constituent of a similar SAM) couple. The calculations, therefore, employ the measured electronic coupling of the attached (to Au electrodes through alkanethiolate bridges) -PyRu(NH3)5(3+/2+) couple. The two approaches also both include dynamic solvent effects on the ET kinetics and the influence of electronic coupling on the activation barrier for the ET reaction. At T=298 K and n=3, 11, and 14, the predicted rate constants are in very good agreement with the existing measurements of k degrees. However, for n<3 at 298 K, the predicted rate constants are extremely large (i.e., >4.5 cm s(-1)) and do not tend toward a limiting value. Additionally, even if the electronic coupling between a Au electrode and a Ru(NH3)6(3+/2+) moiety located at the surface of the SAM is >0.1 eV, the calculated standard rate constant is not directly proportional to the inverse of the longitudinal dielectric time of the solvent. A primary reason for both the absence of a limiting value for the predicted k degrees's at 298 K and the attenuated influence of dynamic solvent effects is the activation energy barrier suppression caused by large values of the electronic coupling.  相似文献   

14.
Polymer electrolytes based on acrylonitrile-butadiene-styrene copolymer   总被引:2,自引:0,他引:2  
One of the approaches to improving the ionic conductivity and the mechanical strength of a solid polymer electrolyte is to use polymers in modified forms, such as polymer blends, copolymers and cross-linked polymers. In this study, a new polymer electrolyte based on the acrylonitrile-butadiene-styrene (ABS) copolymer has been prepared. The ionic conductivity, electrochemical stability and interfacial characteristics of the polymer electrolyte in contact with a lithium electrode have been investigated. The temperature dependence of the conductivity below 20 °C can be described by the Arrhenius equation, and above 20 °C by the VTF equation. Lithium passivation appeared to have taken place in the system. The conductivity and electrochemical characteristics of the system are somewhat similar to those of PAN-based polymer electrolytes. Received: 9 December 1998 / Accepted: 9 March 1999  相似文献   

15.
提出便携式pH计、电导仪、分光光度计检定PC机软件的总体设计思路。介绍了该软件中pH计、电导仪、分光光度计3个PC机软件子系统,其中详细介绍了电导仪PC机软件子系统中的11个主要模块的功能及技术特点.  相似文献   

16.
The mean spherical approximation (MSA) model, coupled with two hard sphere models, was used to predict the activity coefficients of mixtures of electrolyte solutions at different temperatures and concentrations. The models, namely the Ghotbi-Vera-MSA (GV-MSA) and Mansoori et al.-MSA (BMCSL-MSA), were directly used without introducing any new adjustable parameters for mixing of electrolyte solutions. In the correlation step, the anion diameters were considered to be constant, whereas the cation diameters were considered to be concentration dependent. The adjustable parameters were determined by fitting the models to the experimental mean ionic activity coefficients for single aqueous electrolytes at fixed temperature. The results showed that the studied models predict accurately the activity coefficients for single electrolyte aqueous solutions at different temperatures. In the systems of binary aqueous electrolyte solutions with a common anion, the GV-MSA model has slightly better accuracy in predicting the activity coefficients. Also, it was observed that the GV-MSA model can more accurately predict the activity coefficients for ternary electrolyte solutions with a common anion, especially at higher concentrations.  相似文献   

17.
The paper reports on the application of an electronic tongue for simultaneous determination of ethanol, acetaldehyde, diacetyl, lactic acid, acetic acid and citric acid content in probiotic fermented milk. The αAstree electronic tongue by Alpha M.O.S. was employed. The sensor array comprised of seven non-specific, cross-sensitive sensors developed especially for food analysis coupled with a reference Ag/AgCl electrode. Samples of plain, strawberry, apple-pear and forest-fruit flavored probiotic fermented milk were analyzed both by standard methods and by the potentiometric sensor array. The results obtained by these methods were used for the development of neural network models for rapid estimation of aroma compounds content in probiotic fermented milk.The highest correlation (0.967) and lowest standard deviation of error for the training (0.585), selection (0.503) and testing (0.571) subset was obtained for the estimation of ethanol content. The lowest correlation (0.669) was obtained for the estimation of acetaldehyde content. The model exhibited poor performance in average error and standard deviations of errors in all subsets which could be explained by low sensitivity of the sensor array to the compound. The obtained results indicate that the potentiometric electronic tongue coupled with artificial neural networks can be applied as a rapid method for the determination of aroma compounds in probiotic fermented milk.  相似文献   

18.
This paper illustrates how conventional models of chromatographic behaviour can be used to predict the separation behaviour of polydisperse macromolecules. Using polystyrene and polymethylmethacrylate homo- and co-polymeric standards, the models were validated by comparing experimental retention behaviour with that predicted by the chromatographic model. The experimental retention time of each of the samples was entered into a spreadsheet application, which calculated the parameters that best described retention (for a given model). When a correlation between the relevant parameters and molecular mass was established, that correlation was used to predict the change in retention behaviour over the molecular-mass range. An expression introduced in a previous paper, to calculate the critical mobile-phase composition of a homopolymer was validated using polystyrene homopolymers. A second expression, which can predict the elution behaviour of copolymers, was also validated. This expression can predict the retention of a copolymer, based solely onthe retention of the homopolymeric units that make up the copolymer.  相似文献   

19.
By short-circuiting a solid electrolyte galvanic cell, the ionic conductivity of the electrolyte employed in the cell can be determined. There is no other potential involved in this technique with regard to the characterization of the conduction properties of the electrolyte. In particular, the method does not offer any information about the electronic conductivity.  相似文献   

20.
Electronic tongue for quality assessment of ethanol, vodka and eau-de-vie   总被引:1,自引:0,他引:1  
Rapid quality assessment of alcoholic beverages, including brand identification and detection of products of unacceptable quality or counterfeits is an important practical task. In the present work the multisensor electronic tongue system (ET), based on array of potentiometric chemical sensors was applied to recognition and classification of spirits such as vodka and ethanol used for vodka production and also for eau-de-vie in cognac production. The ET system was capable of detecting presence of contaminant substances in vodka in concentrations exceeding allowed levels as well as of distinguishing vodka complying and not complying with state quality standards. Ten brands of vodka produced at the same distillery using water and ethanol of different purity and various taste additives were discriminated using the instrument. The ET could distinguish synthetic and alimentary grain ethanol as well as alimentary ethanol of different grades (i.e. different degree of purification). A feasibility study was run on several eau-de-vie samples, which included fresh and aged eau-de-vie as well as samples produced using different distillation technology and samples kept in contact with different kinds of oak. The electronic tongue showed a promise as an analytical instrument for rapid quality assessment of spirits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号